Paper / Subject Code: 39704 / STRENGTH OF MATERIALS

SE | MTRX | Sem-IV / CBSGS ISH-2018 Q.P. Code: 50218

Duration: 3 Hours

10 12 2018

Q.1 Attempt any Four

[20]

- (a) Draw the Shear force and bending moment diagram for cantilever beam carrying point load at free end.
- (b) Evaluate the extension of rectangular rod under self-weight.
- (c) Explain the theory of pure bending with assumption made.
- (d) A bar of 12 mm diameter, is acted by an axial load of 20 kN. The change in diameter is measured as 0.003 mm. Determine;
 - (i) the Poisson ratio
 - (ii) the modulus of elasticity and bulk modulus . Take G= 80 MPa.
- (e) Define the principle of superposition. What is its utility?
- Q.2 (a) A 10 m long simply supported beam carries a point load of 4 KN at 8 m from the left end along with a uniformly distributed loads of 4 kN/m intensity for 3 m length starting from the left end. The beam is also acted by clockwise couple of 10 kN-m at mid-point of the span. Draw the shear force and bending moment diagram.
 [10]
 - (b) A hollow shaft of diameter ratio 3/8 (internal diameter o external diameter) is to transmit 375 kW power at 100 r.p.m. The maximum torque being 20 % greater than the mean. The Stress is not exceed 60 N/mm² and twist in length of 4 m not exceed 2° Calculate its external and internal diameters which would satisfy both the above conditions. Assume modulus of rigidity $G = 0.85 \times 10^5$ N/mm²

Paper / Subject Code: 39704 / STRENGTH OF MATERIALS

Q.P. Code: 50218

- Q.3 (a) A beam of length 6 m is simply supported at its ends and carries two point loads of 48 kN and 40 kN at a distance of 1 m and 3 m respectably from the left support. Find:
 - (i) Deflection under each load,
 - (ii) Maximum deflection, and
 - (iii) The point at which the maximum deflection occurs.

Take $E= 2 \times 10^5 \text{ N/mm}^2$ and $I= 85 \times 10^6 \text{ mm}^4$

[10]

- (b) A tension bar 5 m long is made up of two parts, 3 metre of its length has a cross-sectional area of 10 cm^2 while remaining 2 metre has a cross-sectional area of 20 cm^2 . An axial load of 80 kN is gradually applied. Find the total strain energy produced in bar and compare this value with that obtained in a uniform bar of the same length and having the same volume when under the same load. $E = 2 \times 10^5 \text{ N/mm}^2$
- Q.4 (a) A steel tube of 30 mm external diameter and 20mm internal diameter enclose a copper rod of 15 mm diameter to which it is rigidly joined at each end. If at a temperature of 10 °C there is no longitudinal stress, calculate the stress in rod and the tube when temperature is raised to 200 °C. Take E for steel and copper as 2×10⁵ N/mm² and 1×10⁵ N/mm² respectively. The value of co-efficient of linear expansion for steel and copper is given as 11 ×10⁻⁶per °C and 18 ×10⁻⁶per °C respectively.
 - (b) Two mutually perpendicular planes of an element of, material are subjected to direct stresses of 10.5 MN/m² (tensile) and 3.5 MN/m² (compressive) and shear of 7 MN/m². Find graphically or otherwise:
 - (i) The magnitude and direction of principle stress and
 - (ii) The magnitude of the normal and shear stress on a plane on which the shear stress is maximum. [10]

Paper / Subject Code: 39704 / STRENGTH OF MATERIALS

Q.P. Code: 50218

- Q.5 (a) A timber beam of rectangular section is to support a load of 20 kN uniformly distributed over a span of 3.6 m, when beam is simply supported. If the depth of section is to be twice the breadth, and the stress in beam is not exceed 7 N/mm², find the dimension of the cross-section. How would you modify the cross-section of the beam, if it carries a concentrated load of 20 kN placed at the Centre with the same ratio of breadth to depth.
 - (b) A shaft transmit 280 kW of power at 160 r.p.m. Determine: (i) The diameter of solid shaft to transmit the required power (ii) the inner and outer diameter of hollow shaft if the ratio of the inner to the outer diameter is 2/3 and (iii) percentage saving the material on using hollow shaft instead of solid shaft. Take allowable shear stress as 80MPa and the density of material 70 kN/m³ [10]
- Q.6 (a) Define the terms:

[10]

- (i) Modular ratio
- (ii) Section modulus
- (b) What do you meant by principal plane and principal stress?
 - [05]

(c) Write short note on flitched beams.

[05]
