(3 Hours)

QP Code: 30637 [Total Marks: 80

N. B.:

1. Question no.1 is compulsory.

2. Attempt any THREE from question no. 2 to 6.

3. Use illustrative diagrams wherever required.

•	-Ma	rke
Q. No.	Avia C	IKS
Ο1)	Attempt ANY FOUR	
Q1) A	State first law of thermodynamics and give mathematical expression of infor a	05
	process and for a cycle	
XX !	Explain the principle of impulse turbine with a neat labeled diagram.	05
(c)	What is cut-off ratio? And explain the effect of compression ratio and cut-off	05
-). ./ .	ratio on the thermal efficiency of diesel cycle?	100
3	What do you mean by 'fouling' in heat exchangers?	95
	Explain in brief Stefan Boltzman law and wein's displacement law in thermal	05
· · · · · · · · · · · · · · · · · · ·	radiation.	
Q2) a)	State and explain Kelvin-plank and Clausius statements of second law of	08
W)	thermodynamics and prove their equivalence	
XX	Explain the characteristic features of a fire tube boiler. How is it different from a	06
/-	water-tube boiler?	31 3 (31 4
CY/	Draw a neat boiling curve for water and mark the different regions. Explain in	06
	short	
02		20
(Q3) a)	Derive the expression of cycle efficiency for "Brayton cycle".	08
- Post	What is conduction heat transfer? For transient heat conduction, with negligible	12
· .	internal resistance with usual notations show that, $\theta/\theta_i = \exp(-Bi.Fo)$	
.		
Q4). a)	Assuming an engine with 210 mm bore and 300 mm stroke on diesel cycle, with	08
· ·	initial pressure and temperature of air as 1 bar and 27°C and cut off occurs at 8%	
	of stroke. Li compression ratio is 15:1, find:	
	I. Pressure and temperature at salient points.	
	II. Heat added, heat rejected and net work done.	
	III. Air standard efficiency.	
	iV. Mean effective pressure.	
	V. Power output if speed is 1000 rpm and mechanical efficiency is 85%.	
b	Derive general heat conduction equation in Cartesian coordinates. Deduce	12
	Fourier, Poissons, and Laplace equation from it	12
() ·-		

- Q5) a) A hot square plate 40 cm x 40 cm at 100°C is exposed to atmospheric air at 20°C. Find the heat losses from both the surfaces of the plate if:
 - i. The plate is held horizontal
 - ii. The plate is held in vertical plane

Properties of air at average temperature are: $\rho = 1.06 \text{ kg/m}^3$; $\nu = 18.97 \times 10^{-6} \text{ m}^2/\text{s}$; $C_p = 1004 \text{ J/kgK}$; $k = 2.89 \times 10^{-2} \text{ W/mK}$;

Following empirical relations may be used to find average heat transfer coefficients:

Case (I): $Nu = 0.13(Gr . Pr)^{1/4}$

Case (II): For lower surface $Nu = 0.35(Gr. Pr)^{1/4}$

For upper surface Nu = $0.71(Gr. Pr)^{1/4}$

- b) Derive expression for LMTD for Parallel flow type heat exchanger
- Under what condition the relation W= | pdv holds good. What is the difference 05 between | pdv and | vdp?
 - b) Draw the combined velocity triangle for a single stage reaction turbine and derive an expression for workdone per stage
 - c) What is a 'black bedy'? How does it differ from a gray body? Expalin. 05