QP Code: 30542

(3 Hours)

[Total Marks : 80

N.B.: (1) Question No.1 os compulsory

- (2) Answer any three from remaining
- (3) Figures to the right indicate marks.
- 1. (a) Find laplace transform of $\frac{\sin^2 2t}{t}$

- 5
- (b) Find the orthogonal tragectory of the family of curves $e^{-x}\cos y + xy = \alpha$ where α is a real constant in the xy plane
- 5

(c) Find complex form of fourier series

5

 $f(x) = e^{3x}$ in 0 < x < 3

- 5
- (d) Show that the function is analytic and find their derivative $f(z) = ze^{z}$
- 2. (a) Using laplace transform solve: $\frac{d^2y}{dt^2} + y = t$ y(0) = 1 y'(0) = 0

(b) Using Crank Nicholson method

Solve:
$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$$

$$u(0, t) = 0$$
 $u(4, t) = 0$

$$u(x,0) = \frac{x}{3}(16-x^2)$$
 find u_{ij}

for i = 0, 1, 2, 3, 4 and j = 0, 1, 2

(c) Show that the set of functions $1, \sin \frac{\pi x}{I}, \cos \frac{\pi x}{I}, \sin \frac{2\pi x}{I}, \cos \frac{2\pi x}{I}, \dots$ form an orthogonal set in (-L, L) and construct an orthonormal set.

TURN OVER

- (a) Find the bilinear transformation that maps points 0, 1, ∞ of the z plane into 6
 -5, -1, 3 of w plane.
 - (b) By using Convolution theorem find inverse laplace transform of $\frac{1}{(s-2)^4(s+3)}$
 - (c) Find the Fourier series of f(x) $f(x) = \cos x - \pi < x < 0$ $\sin x \quad 0 < x < \pi$
- 4. (a) Find half range sine series for x sin x in (0, π) and hence deduce $\frac{\pi^2}{8\sqrt{2}} = \frac{1}{1^2} \frac{1}{3^2} + \frac{1}{5^2} \frac{1}{7^2} \dots$
 - (b) Evaluate and prove that $\int_{0}^{\infty} e^{-\sqrt{2}t} \frac{\sin t \sinh t}{t} = \frac{\pi}{8}$
 - (c) Obtain Laurent's series for the function $f(z) = \frac{-7z-2}{z(z-2)(z+1)}$ about z = -1
- 5. (a) Solve: $\frac{\partial^2 u}{\partial x^2} \frac{\partial u}{\partial t} = 0$ subject to the conditions u(0, t) = 0, u(5, t) = 0 of $u(x,0) = x^2(25 x^2)$ taking h = 1 upto 3 seconds only by Bender schmidt formula.
 - (b) Construct an analytic function whose real part is $\frac{\sin 2x}{\cosh 2y + \cos 2x}$
 - (c) Evaluate $\sqrt[3]{\frac{d\theta}{3+2\cos\theta}}$

TURN OVER

FW-Con. 9410-16.

3

6. (a) An elastic string is stretched between two points at a distance *l* apart. In its equilibrium position a point at a distance a(a < l) from one end is displaced through a distance b transversely and then released from this position. Obtain y(x, t) the vertical displacement if y satisfies the equation.

50

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$$

(b) Evaluate: $\int_{0}^{1+t} z^{2} dz$ along

6

- (i) The line y = x
- (ii) The parabola $x = y^2$

Is the line integral independent of path? Explain.

(c) Find fourier expansion of

8

$$f(x) = \left(\frac{\pi - x}{2}\right)^2$$

in the interval $0 \le x \le 2\pi$ and $f(x+2\pi) = f(x)$ and also deduce

(i) $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} \dots$

(ii) $\frac{\pi^4}{90} = \frac{1}{1^4} + \frac{1}{2^4}$