[Total Marks: 80 (3 Hours)

N.B.: (1) Question No. 1 is compulsory.

- (2) Solve Any Three questions out of the remaining questions.
- Figures to the right indicate Full Marks.
- State the properties of Information? Also derive the expression for entropy.
 - What is Compression? List different Compression algorithm. Why adaptive Huffman coding is used?
 - Explain Asymmetric key cryptography.
 - What are the security goals? Define Cryptography
 - (e) Describe Fermat's Little Theorem.
- Given $x_i = \{x_1, x_2, x_3, x_4, x_5, x_6\}$ with probabilities as below: $P(xi) = \{0.3, 0.25, 0.2, 0.06, 0.04, 0.05, 0.06, 0.04\}$
 - Determine the efficient fixed length code for the source.
 - (ii) Determine the Huffman code for this source.
 - (iii) Compare the two codes and comment.
 - Explain convolution code in brief. 10
- A (7,4) cyclic code has a generator polynomial: $g(x) = X^3 + X + 1$. 10
 - Draw the block diagram of encoder.
 - (ii) Find generator and parity check matrices in systematic form.
 - Explain Chinese Remainder theorem and also Explain the properties 10 of Modular Arithmetic and Congruences.
- Describe about Discrete probability and logarithms.
 - 10 (b) For a (6,3) linear block code, the coefficient matrix [p] is as follows:

$$P = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

The received code words at the receiver are:

- 1) 0 0 1 1 1 0 2) 1 1 1 0 1 1

Check whether they are correct or contains some errors.

Q.P. Code: 3660

2

5.	(a)	Explain Diffie-Hellman algorithm. Which attack is it vulnerable to?	1(
	(b)	Explain convolution code in brief.	1 (
6.	(a)	What do you mean by Symmetric key cryptography? Explain DES in detail.	1(
	(b)	Write a short note on: Types of Entropy and LZW compression.	1 (
	8 <u>12</u> 8		