Paper / Subject Code: 51401 / Applied Mathematics-III S.E. SEM - III / IT / CHOICE BASED / NOV 2018/ 20.11.2018

(3 Hours)

(Total Marks: 80)

- **Note:** 1. Question no. 1 is compulsory.
 - 2. Attempt any three questions out of remaining five questions.

[5] [5]

[b] How many friends must you have to guarantee that atleast five of them have birthday in the same month.

[c] Determine the constants a, b, c, d, e so that the function $f(z) = ax^4 + bx^2y^2 + cy^4 + dx^2 - 2y^2 + i(4x^3y - exy^3 + 4xy)$ is analytic. [5]

[5]

[6]

[d] Out of one lakh people 51500 are female and 48500 are male. Among the females 9000 are singers, among the males 30200 are singers. A person chosen randomly. If A, B, C are the events that a singer is chosen, a female is chosen and male is chosen respectively then find (i) P(A/B) (ii) P(A/C) (iii) P(A/C) (iv) P(C/A).

Using Venn diagram show that $P \cap (Q \oplus R) = (P \cap Q) \oplus (P \cap R)$.

Evaluate $L\{f(t)\}$ where $f(t) = \begin{cases} 1 & 0 \le t < a \\ -1 & a < t < 2a \end{cases}$ and f(t+2a) = f(t). [6]

[c] Let f, g, h be the functions shown in the diagraph: [8]

Find: (i) $g \circ f$, $h \circ (g \circ f)$, $(h \circ g) \circ f$, h^{-1}

(ii) Identify onto and one-one function for 3 of them.

Q.3. [a] Find analytic function
$$f(z) = u + iv$$
 where $v = \frac{x}{x^2 + v^2} + \cosh x \cos y$. [6]

[b] Solve
$$(D^2 + 2D + 5)y = e^{-t} \sin t$$
, when $y(0) = 0$, $y'(0) = 1$.

[8] Evaluate (i)
$$L\left\{\frac{1}{t}(1-\cos t)\right\}$$

(ii)
$$\int_{0}^{\infty} e^{-t} \left(\int_{0}^{t} u^{4} \sinh u \cosh u \ du \right) dt$$

- Q.4. [a] Evaluate using convolution theorem $L^{-1} \left[\frac{(s+2)}{(s^2+4s+8)^2} \right]$ [6]
 - [b] Find bilinear transformation which maps the points $z=-1,1,\infty$ onto [6] w=-i,-1,i.
 - [c] Three machines A, B and C produce respectively 25%, 35% and 40% of the total number of items of a factory. The percentages of defective output of these machines are respectively 5%, 4% and 2%. An item is selected at random and is found to be defective. Find the probability that the item was produced by machine A.
- Q.5. [a] Suppose repetitions are not permitted.

 (i) How many four- digit numbers can be formed from the digits

 [6]
 - (i) How many four- digit numbers can be formed from the digits 1, 2, 3, 5, 7, 8?
 - (ii) How many of the numbers in part (a) are less than 4000?
 - (iii) How many of the numbers in part (a) are multiples of 5?
 - [b] Let A={1,2,3,4,12} and let R be the relation on A defined by xRy if and only if "x divides y", Show that (A.R) is a PO set. Draw the diagraph of R.
 - [c] Evaluate (i) $L^{-1} \left[\frac{e^{-5s}}{(s-2)^4} \right]$ (ii) $L^{-1} \left[\log \left(\frac{s+3}{s+5} \right) \right]$ [8]
- Q.6. [a] It is known that at the university 60% of the professors play tennis, 50% of them play bridge, 70% jog, 20% play tennis and bridge, 30% play tennis and jog, 40% play bridge and jog. If someone claimed that 20% of the professors jog and play bridge and tennis, would you believe this claim? Why?
 - [b] Solve $a_{r+2} + 2 a_{r-1} 3a_r = 0$ that satisfies $a_0 = 1$, $a_1 = 2$. [6]
 - [c] (i) If f(z) is an analytic and |f(z)| is constant, show that f(z) is constant. [8]
 - (ii) Find the image of |z-ai| = a under the transformation $w = \frac{1}{z}$.