Q. P. Code: 50743

[Time: Three Hours]

[Marks:80]

Please check whether you have got the right question paper.

N.B:

- 1. Question no. 1 is compulsory.
- 2. Solve any three questions from the remaining.
- 3. Assume suitable data wherever necessary.

Q.1 Attempt any four.

(20)

(a) Find current through 20 Ω branch.

- (b) Discuss the initial and steady state conditions in relationship with voltage and current for the following circuit elements.
 - i) Resistor
- ii) Inductor
- iii) Capacitor
- (c) Draw the oriented graph of a network with f-cutset matrix as shown:

Twigs					links		
1	2	3	4	5	6	7	
1	0	0	0	-1	0	0	
0	1	0	0	1	0	1	
0	0	1	0	0	1	1	
0	0	0	1	0	1	0	

- (d) Write the properties of positive real function.
- (e) Find Y-parameter for the shown network.

Q.2 (a) In the given network; what will be the value of R_L to get max. power delivered to it. (10)

Page 1 of 3

(05)

(05)

(b) In the network shown; a steady state is reached with switch open. At t=0 the switch is closed. For the element values given; determine the V_a (0⁻) V_b (0⁻) and V_a (0⁺) and V_b (0⁺)

Q.3 (a) Obtain Norton's equivalent circuit of the shown network.

(b) Obtain thevenins equivalent source.

(c) For the shown network, switch is closed at t=0, determine V, dv/dt and d^2v/dt^2 at $t=0^+$ (10)

Q.4 (a) Find network functions $\frac{V_1}{I_I}$, $\frac{V_2}{I_I}$ and $\frac{V_2}{V_I}$ for the shown network (10)

Page 2 of 3

(b) Find $V_c(t)$ using Laplace transform. If the switch is closed at t = 0.

Q.5 (a) Linear graph of a network is shown in figure. Obtain (10)

(10)

- i) Incidence matrix
- ii) Fundamental cutset matrix
- iii) Fundamental tieset matrix.

(b) In the network shown. Switch is opened at t = 0. Steady state condition is achieved (10)before t = 0 find i (t).

(a) Check whether the following polynomials Hurwitz's or not. Q.6

(10)

i)
$$P(s) = 2s^6 + s^5 + 135^4 + 6s^3 + 56s^2 + 25s + 25$$

ii) $P(s) = s^4 + 7s^3 + 6s^2 + 21s + 8$

(10)

(b) Realize the Foster forms of the impedance function $Z(s) \frac{4(s^2+1)(s^2+9)}{s(s^2+4)}$
