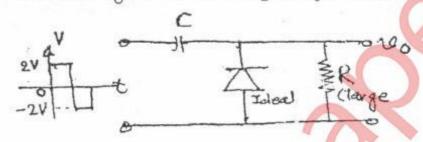
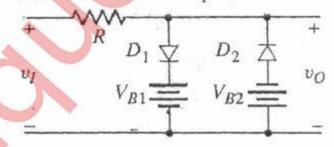


(3 Hours)


[Total Marks: 80

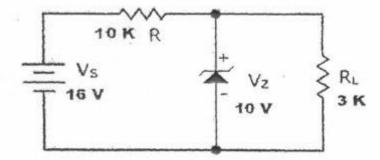
20


- N. B.: (1) Question 1 is compulsory.
 - (2) Attempt any four from remaining five questions.
 - (3) All questions carry equal marks.
 - (4) Assume suitable data wherever necessary.
- 1. Attempt any five :-

(a) Calculate the CMRR (in dB) for the circuit measurements of V_D = 1 mV, V_{O-D} = 120 mV, and V_{CM} = 1 mV, V_{O-CM} = 20 μ V.

- (b) For an op-amp having a slew rate of SR = 2.4 V/μs, what is the time taken for output to change from -15 V to +15 V.
- (c) Determine Vo for the following clamper circuit.

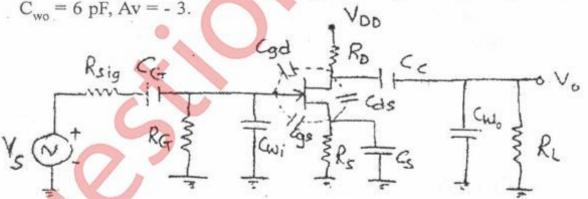
- (d) Given I_{DSS} = 16 rnA and V_p = -5 V, sketch the transfer characteristics using the data points. Determine the value of I_D at V_{GS}= -3 V from the curve, and compare it to the value determined using Shockley's equation.
- (e) Crossover distortion behavior is characteristic of Class A Power amplifier. State true or false with reason.
- (f) Compare class A, class B and class C power amplifier based on,
 - (a) Output waveform for collector current
 - (b) Linearity
 - (c) Distortion
 - (d) Efficiency
- 2. (a) Determine output voltage. Assume, V_{B1} = 8 V, V_{B2} = 6 V and input to be sine wave of 20 V peak.



TURN OVER

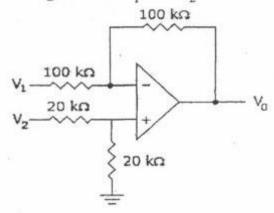
MD-Con. 10470-15.

(b) For the Zener diode network, determine V_L, V_R, I_Z and P_Z. Consider supply voltage of 16 v, zener voltage of 10 V, series resistor of 10 K and load resistance of 3 K.

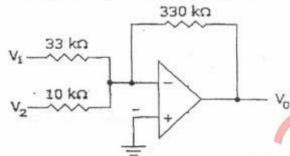

(c) Explain working of bridge rectifier.

4

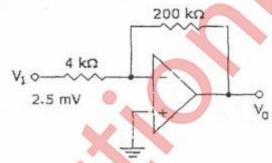
4

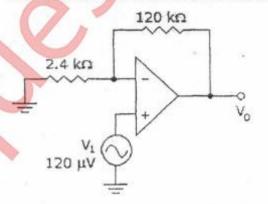

- 3. (a) Determine the levels of I_{CQ} and V_{CEQ} for the CE BJT amplifier with voltage-divider configuration. Consider $R_1 = 82$ K, $R_2 = 22$ K, $R_C = 5.6$ K, $R_E = 1.2$ K, $V_{CC} = 18$ v and $\beta = 50$.
 - (b) Explain constructing and working of D-MOSFET.
 - (c) What is harmonic distortion? Write the equation for total harmonic distortion.
- 4. (a) Determine the higher cut off frequencies for the given circuit diagram.

 Given: $C_G = 0.01 \mu F$, $C_C = 0.5 \mu F$, $C_S = 2 \mu F$, $R_{SIG} = 10 k$, $R_G = 1 M$, $R_D 4.7 k$, $R_S = 1 k$, $R_L = 2.2 k$, $I_{DSS} = 8 mA$, $V_P = -4 V$, $rd = \infty$, $V_{DD} = 20 V$, $C_{gd} = 2 pF$, $C_{gs} 4 pF$, $C_{ds} = 0.5 pF$, $C_{wi} = 5 pF$, $C_{c} = 6 pF$, $\Delta v = -3$



- (b) Derive equation for three Op Amp Instrumentation amplifier. Give advantages and applications of Instrumentation amplifier.
- 5. (a) Draw and explain a series voltage regulator.
 - (b) Explain integrator using Op Amp. Draw its frequency response. State 10 disadvantages of basic integrator and how it is overcome in practical integrator circuit. [TURN OVER]


6. (a) Derive the expression for output voltage and hence determine the output voltage when $V_1 = -V_2 = 1$ V.


(b) Derive the expression for output voltage and hence calculate the output voltage if $V_1 = -0.2 \text{ V}$, $V_2 = 0.1 \text{ V}$.

(c) Derive the expression for output voltage and draw the output voltage for this circuit with a sinusolual input of 2.5 mV.

(d) Derive the expression for output voltage and draw the output voltage for this circuit with a sinusoidal input of 120 μV.

MD-Con. 10470-15.

Course: S.E. (SEM - I) (REV-2012) (CBSGS) (INSTR. ENGG.) (PROG-T1723)
-----------------------	------------------------	----------------------------

QP Code: 5214

Correction:

Read as:

N.B. (1)....

- (2) Attempt any three from remaining five questions.
- (3).....
- (4).....

Instead of

N.B. (1)....

- (2) Attempt any four from remaining five questions.
- (3).....
- (4).....

Query Update time: 09/12/2015 03:30 PM