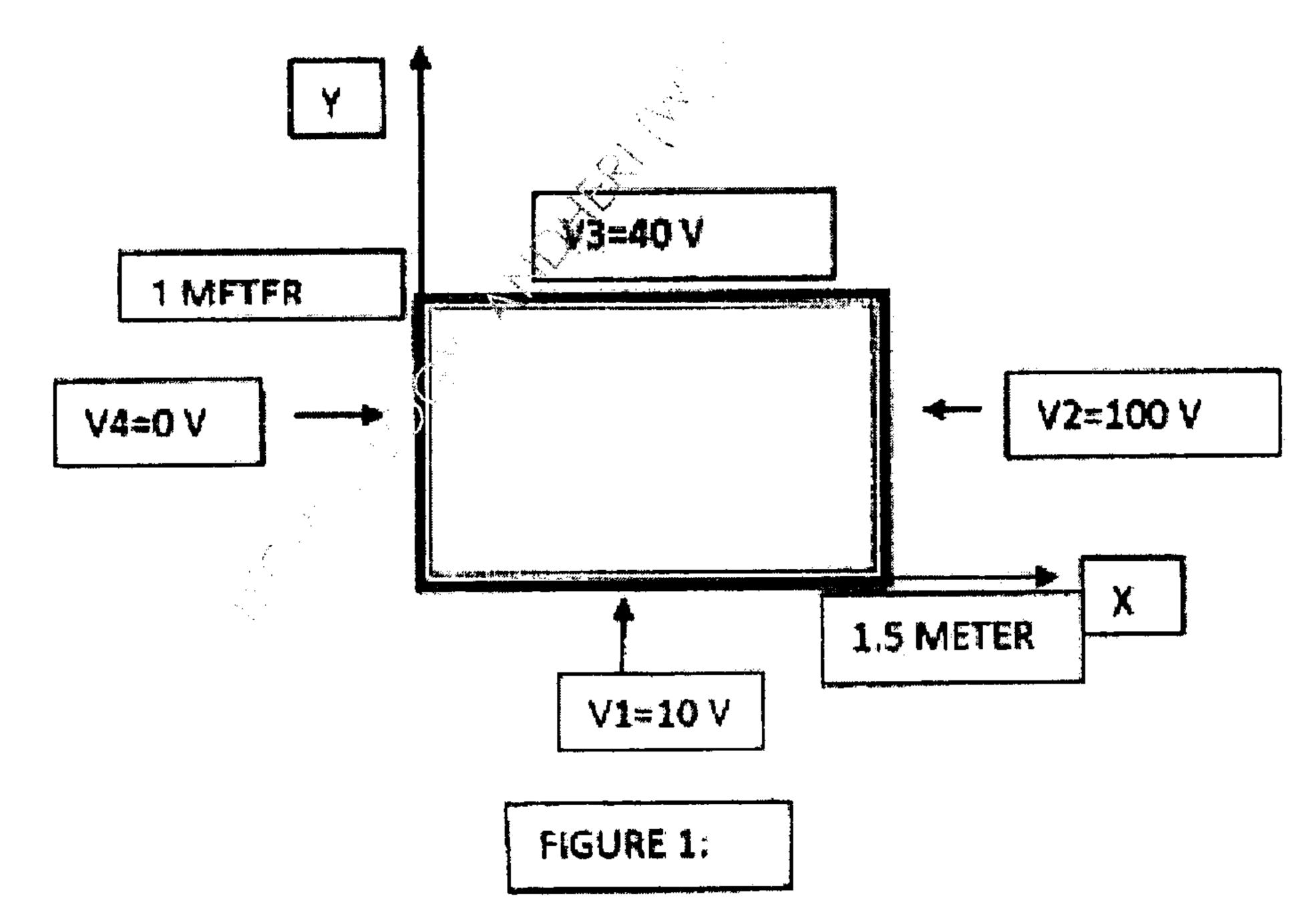
QP Code: 546002

(3 Hours)

[Total Marks: 80


N. B.: (1) Question No.1 is compulsory.

- (2) Attempt any three out of remaining questions.
- (3) Use suitable data whenever is required.
- 1. Solve any four:

2(

- (a) Describe significance of Boundary Conditions for Electric Field.
- (b) Explain the operation of Electromagnetic Pump.
- (c) Define Reflection and Transmission Coefficient.
- (d) Compare parallel with perpendicular polarization.
- (e) Define and explain Vector Magnetic Potential.
- 2. (a) Describe Poynting Theorem and explain various terms associated with the same
 - (b) Compare various numerical techniques such as FDM, FEM and MOM
 - (c) Obtain the Laplace's Equation for as infinitely long through whose cross section is shown in figure 1.

let V1=10 V, V2=100 V, V3=40 V, V4=0 V. USING ITERATION METHOD.

3.	(a)	A zero potential reference is at r=10 meter and point charge	5
		Q= 0.5 nC is placed at origin. Find potential at r=5 meter and 15 meter.	
	(b)	Use MOM to find out the capacitance of parallel plate capacitor having plate area as 1* 1 meter and distance between two plates is 1 meter.	10
	(c)	Assume air dielectric capacitor. Voltage across capacitor is 2 volts. Derive the expression for magnetic field intensity due to infinite line conductor.	5
4.	(a)	Circular loop conductor carrying current of 1 A is placed in x-y plane centred at origin. Find expression for Magnetic field intensity at any point P on Z- axis.	10
	(b)		10
	\ /	The square diagonal is 12 meters. Find the force on 200 µC charge	
		located 5 meter above the centre of a square	
5.	(a)	Define the following terms-	10
		1) Wave Impedance	
		2) Intrinsic Impedance	
		3) Propagation Constant	
		4) Attenuation Constant	
		5) Phase Constant	
	(b)	In free space, $V = 6xy^2z + 8$. At point $\mathbb{R}(1,2,-5)$ find E and volume charge	10
		density.	
6.	(a)	Describe the space wave propagation and derive relation for maximum	10
	` '	distance between transmitting and receiving antenna. Earth is assumed	
		to be flat.	
	(b)	Explain ducting effect. Under what conditions this effect takes place.	5
	(c)	Describe the Fading.	5
	` /		