a.	ETRX, EXTC.	SEM IIL CBG John	115
	AM-TV	QP Code : 535 —	0
Duratio	ion: 3 Hours (REVISED COURSE) Total	marks assigned to the paper	r: 8 0
N.B:1)) Q 1 is compulsory.		
2)) Attempt any three from the remaining.		(-)
Q 1:	a) Find the extremal of $\int_{x_1}^{x_2} (y^2 - y'^2 - 2y \cosh x) dx$		(5)
	b) Find an orthonormal basis for the subspaces of R^3 by applying	g Gram-Schmidt process whe	ere
	S={(1,2,0)(0,3 1)}		(5)
	c) Show that eigen values of unitary matrix are of unit modulus.		(5)
	d) Evaluate $\int \frac{dz}{z^3(z+4)}$ where $ z = 4$.		(5)
Q2:	a) Find the complete solution of $\int_{x_0}^{x_1} (2xy - y''^2) dx$	S.	(6)
	(b) Find the Eigen value and Eigen vectors of the matrix A^3 where	$A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{bmatrix}$	(6)
	(c) Find expansion of $f(z) = \frac{1}{(1+z^2)(z+2)}$ indicating region of contrast of the second secon	nvergence.	(8)
Q3:	a) Verify Cayley Hamilton Theorem and find the value of A^{64} for	r the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$.	(6)
	b) Using Cauchy's Residue Theorem evaluate $\int_{-\infty}^{\infty} \frac{x^2}{x^6+1} dx$		(6)
	c) Show that a closed curve 'C' of given fixed length (perimeter)	which encloses maximum a	(0)
	is a circle.	(10	(0)
Q4:	a) State and prove Cauchy-Schwartz inequality. Verify the inequ	Jality for vectors $u = (-4,2)$	1) ana
	v=(8,-4,-2)		(6)
	b) Reduce the Quadratic form $xy + yz + zx$ to diagonal form t	hrough congruent transform	hation.(6)
	c) If $A = \begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} \end{bmatrix}$ then find e^A and 4^A with the help of M	odal matrix.	(8)
Q5:	5: a) Solve the boundary value problem $\int_0^1 (2xy + y^2 - y'^2) dx$	$0 \le x \le 1, y(0) = 0, y(1)$) = 0 by
	Rayleigh - Ritz Method.		(6)

[TURN OVER

MD-Con. 8620-15.

Care and

QP Code : 5350

(8)

b) If $W = \{ \alpha : \alpha \in \mathbb{R}^n \text{ and } a_1 \ge 0 \}$ a subset of $V = \mathbb{R}^n$ with $\alpha = (a_1, a_2, \dots, a_n)$ in \mathbb{R}^n $(n \ge 3)$. Show that W is not a subspace of V by giving suitable counter example. (6)

c) Show that the matrix
$$A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$$
 is similar to diagonal matrix. Find the diagonalsing

matrix and diagonal form.

╅╇┼╋╊╈┧┇╡┆╏╽╋╋┨╈┼╏┢╊╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋╋

Q6: a) State and prove Cauchy's Integral Formula for the simply connected region and hence evaluate $\int \frac{z+6}{z^2-4} dz, \quad |z-2| = 5$ (6)

b) Show that
$$\int_0^{2\pi} \frac{\sin^2\theta}{a+b\cos\theta} d\theta = \frac{2\pi}{b^2} \left(a - \sqrt{a^2 - b^2}\right), \ 0 < b < a.$$
(6)

c) Find the Singular value decomposition of the following matrix $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$ (8)

SARDAR PATEMD-Con. 8620-15.

001

2