(3 Hours) [Total Marks: 80

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Solve any three questions from the remaining five questions.
 - (3) Figures to the right indicate full marks.
 - (4) Assume suitable data if required and mention the same in the answer sheet.
- 1. Solve any five of the following:-

20

- (a) Draw low pass first order active filter and derive expression for cut-off frequency.
- (b) What is cross over distortion? How to overcome the same.
- (c) Determine unity gain band width for n-channel MOSFET with parameter $kn = 0.25 \text{ mA/V}^2, V_{TN} = IV, \lambda = 0, C_{gd} = 0.05 \text{ pf}, C_{gs} = 0.25 \text{ pf}.$ Assume MOSFET is biased at $V_{GS} = 3 \text{ V}$.
- (d) Draw high frequency hybrid- π model and explain significance of each parameter.
- (e) Why Cascode (CE-CB) amplifier provides more bandwidth as campared to CE Amplifier with equal gain.
- (f) Implement $Vo = -(2V_1 + 5V_2 + 7V_3)$ using OpAmp.
- 2. (a) In common-emitter circuit as shown in **Fig. 2a**, the transistor parameters are β = 120, 10 $V_{BE(on)}$ = 0.7 V, V_A = 100 V, C_μ = 1 pF and f_T = 600 MHz. Determine :
 - (i) Cπ and equivalent Miller Capacitance CM.
 - (ii) The higher cut-off frequency.
 - (iii) Small Signal midband voltage gain.

Fig. 2a

(b) For the circuit shown in Fig. 2b the transistor parameters are kn = 0.5 mA/V², 10 V_{TN} = 2 V and C_L = 5 pF. Determine lower cut-off frequency and small signal voltage gain.

- (a) Draw the circuit diagram of MOSFET based differential amplifier and derive expression 10
 for differential voltage gain, common mode gain and CMRR.
 - (b) Draw circuit diagram of cascode amplifier using BJT and derive expression for voltage 10 gain, in put resistance and output resistance.
- (a) For the basic three transistor current source shown in Fig. 4a, the parameters are: 10 V⁺ = 9V, V⁻ = 0V and R₁ = 12 K, for all transistors V_{BE(on)} = 0.7 V, β = 75 and V_A = ∞. Calculate value of each current shown in Fig. 4a i.e. I_{REF}, I_{CI}, I_{B1}, I_{B2}, I_{E3}, I_{B3}.

Fig. 4a

(b) Draw the circuit diagram and small signal equivalent circuit of Darlington configuration 10 and derive expression for its input resistance and current gain.

5. (a) Draw circuit diagram of class B power amplifier. Explain its working with the help of 10 waveforms and derive expression for power conversion efficiency.

3

- (b) For the circuit shown in Fig. 5b, transistor parameters are $\beta = 100$, $V_{BE(on)} = 0.7 \text{ V}$ and 10 $V_A = \infty$.
 - (i) I_{C1} , I_{C2} , I_{E} , V_{CE1} and V_{CE2}
 - (ii) Calculate differential voltage gain Ad for one sided output at the collector of Q_2 .

Fig. 5b

6. Write short notes on any four of the following:-

20

- (a) Power MOSFET
- (b) Transistorized shunt regulator
- (c) Differentiator using OpAmp
- (d) Wilson current source
- (e) High frequency model of MOSFET.