S.E. SEM IIL CBQS BOHILIS GP Code: 5350 AM-TV

(REVISED COURSE) To

Total marks assigned to the paper:80

Duration: 3 Hours

N.B:1) Q 1 is compulsory.

2) Attempt any three from the remaining.

Q 1:	a) Find the extremal of $\int_{x_1}^{x_2} (y^2 - y'^2 - 2y \cosh x) dx$	(5)
b) Find an orthonormal basis for the subspaces of R^3 by applying Gram-Schmidt process when		
	S={(1, 2, 0)(0, 3 1)}	(5)
	c) Show that eigen values of unitary matrix are of unit modulus.	(5)
	d) Evaluate $\int \frac{dz}{z^3(z+4)}$ where $ z = 4$	(5)
Q2:	a) Find the complete solution of $\int_{x_0}^{x_1} (2xy - y''^2) dx$	(6)
	(b) Find the Eigen value and Eigen vectors of the matrix A^3 where $A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{bmatrix}$	(6)
	(c) Find expansion of $f(z) = \frac{1}{(1+z^2)(z+2)}$ indicating region of convergence.	(8)
Q3:	a) Verify Cayley Hamilton Theorem and find the value of A^{64} for the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$	(6)
	b) Using Cauchy's Residue Theorem evaluate $\int_{-\infty}^{\infty} \frac{x^2}{x^6+1} dx$	(6)
	c) Show that a closed curve 'C' of given fixed length (perimeter) which encloses maximur	n area
	is a circle.	(8)
Q4:	a) State and prove Cauchy-Schwartz inequality. Verify the inequality for vectors $u = (-4,2,1)$ and	
Q.4.	v = (8, -4, -2)	(6)
	b) Reduce the Quadratic form $xy + yz + zx$ to diagonal form through congruent transformation.(6)	
	c) If $A = \begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} \end{bmatrix}$ then find e^A and 4^A with the help of Modal matrix.	(8)
Q5:	a) Solve the boundary value problem $\int_0^1 (2xy + y^2 - y'^2) dx$, $0 \le x \le 1$, $y(0) = 0$, y	y(1) = 0 by
	Bayleigh - Ritz Method.	(6)

Ravleigh - Ritz Method.

[TURN OVER

MD-Con. 8620-15.

QP Code : 5350

(8)

┝┾┽╋┿

b) If $W = \{ \alpha : \alpha \in \mathbb{R}^n \text{ and } a_1 \ge 0 \}$ a subset of $V = \mathbb{R}^n$ with $\alpha = (a_1, a_2, \dots, a_n)$ in \mathbb{R}^n $(n \ge 3)$. Show that W is not a subspace of V by giving suitable counter example. (6)

c) Show that the matrix $A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ is similar to diagonal matrix. Find the diagonal sing

matrix and diagonal form.

Q6:

a) State and prove Cauchy's Integral Formula for the simply connected region and hence evaluate $\int \frac{z+6}{z^2-4} dz, \quad |z-2| = 5$ (6)

╧╋╉┼┾┼┼┼┿╋╂┼┵┼╅┼┿╋┽┼┙╡┼┥┽┼┶┟┶┥┶┧┶╺╅╋┼┼╆╡

b) Show that
$$\int_0^{2\pi} \frac{\sin^2\theta}{a+b\cos\theta} d\theta = \frac{2\pi}{b^2} \left(a - \sqrt{a^2 - b^2} \right), \ 0 < b < a.$$
(6)

c) Find the Singular value decomposition of the following matrix $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$ (8)

MD-Con. 8620-15.

2