N.B:1) Q 1 is compulsory.
2) Attempt any three from the remaining.

Q 1: a) Find the extremal of $\quad \int_{x_{1}}^{x_{2}}\left(y^{2}-y^{\prime 2}-2 y \cosh x\right) d x$
b) Find an orthonormal basis for the subspaces of R^{3} by applying Gram-Schmidt process where $S=\{(1,2,0)(0,31)\}$
c) Show that eigen values of unitary matrix are of unit modulus.
d) Evaluate $\int \frac{d z}{z^{3}(z+4)}$ where $|z|-4$

Q2: a) Find the complete solution of $\int_{x_{0}}^{x_{1}}\left(2 x y-y^{\prime 2}\right) d x$
(b) Find the Eigen value and Eigen vectors of the matrix A^{3} where $A=\left[\begin{array}{ccc}4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2\end{array}\right]$
(c) Find expansion of $f(z)=\frac{1}{\left(1+z^{2}\right)(z+2)}$ indicating region of convergence.

Q3: a) Verify Cayley Hamilton Theorem and find the value of A^{64} for the matrix $A=\left[\begin{array}{rr}1 & 2 \\ 2 & -1\end{array}\right]$.
b) Using Cauchy's Residue Theorem evaluate $\int_{-\infty}^{\infty} \frac{x^{2}}{x^{6}+1} d x$
c) Show that a closed curve ' C ' of given fixeci' length (perimeter) which encloses maximum area is a circle.

Q4: a) State and prove Cauchy-Schwariz inequality. Verify the inequality for vectors $u=(-4,2,1)$ and $v=(8,-4,-2)$
b) Reduce the Quadratic form $x y+y z+z x$ to diagonal form through congruent transformation.(6) c) If $A=\left[\begin{array}{cc}\frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2}\end{array}\right]$ then find e^{A} and 4^{A} with the help of Modal matrix.

Q5: a) Solve the boundary value problem $\int_{0}^{1}\left(2 x y+y^{2}-y^{2}\right) d x, 0 \leq x \leq 1, y(0)=0, y(1)=0$ by Favleigh - Ritz Method.

MD-Con. 8620-15.
b) If $W=\left\{\alpha\right.$: $\alpha \in R^{n}$ and $\left.a_{1} \geq 0\right\}$ a subset of $V=R^{n}$ with $\alpha=\left(a_{1}, a_{2} \ldots \ldots a_{n}\right)$ in $R^{n}(n \geq 3)$. Show that W is not a subspace of V by giving suitable counter example.
c) Show that the matrix $A=\left[\begin{array}{rrr}8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1\end{array}\right]$ is similar to diagonal matrix. Find the diagonalsing matrix and diagonal form.
Q6: a) State and prove Cauchy's Integral Formula for the simply connected region and hence evaiuate

$$
\begin{equation*}
\int \frac{z+6}{z^{2}-4} d z, \quad|z-2|=5 \tag{16}
\end{equation*}
$$

b) Show that $\int_{0}^{2 \pi} \frac{\sin ^{2} \theta}{a+b \cos \theta} d \theta=\frac{2 \pi}{b^{2}}\left(a-\sqrt{a^{2}-b^{2}}\right), 0<b<a$.
c) Find the Singular value decomposition of the following matrix $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]$

