Paper / Subject Code: 40901 / Applied Mathematics-IV

1T01124 - S.E.(Electronics Engineering)(SEM-IV)(Choice Based) / 40901 - Applied Mathematics-IV 4-Dec-2019 76340

> (3 Hours) [Total Marks: 80]

Note: 1) Question no 1 is compulsory.

- 2) Attempt any 3 question out of remaining.
- 3) Each question carries 20 Marks.
- 4) Figures to right indicate full marks.
- Q.1 a) Compute the Spearman's Rank correlation coefficient for the following data: [5] x: 18 20 34 52 12 y: 39 23 35 18 46
 - b) Evaluate ∫₀²⁺ⁱ z² dz along the line x=2y.
 c) Find the projection of u = (3,1,3) along and perpendicular to v = (4,-2,2) [5]
 - [5]
 - Find the eigen values of $5A^2 6A + I$ where $A = \begin{bmatrix} -1 & 5 & 9 \\ 0 & -3 & 4 \\ 0 & 0 & 2 \end{bmatrix}$ d) [5]
- Find the extremals of $\int_{x_1}^{x_2} \frac{yr^2}{x^2} dx$ [6] Q.2
 - Use Gram-Schmidt process to construct the orthogonal basis from $x_1 = (1, 1, 1), x_2 =$ [6] $(0,1,1), x_3 = (0,0,1).$
 - Show that $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ is diagonalisable and hence find the transforming matrix and [8] diagonal form of A.
- Q.3 For a normal variable x, with mean 2.5 and standard deviation 3.5, find the probability [6] that (i) $2 \le x \le 4.5$ and (ii) $-1.5 \le x \le 5.5$
 - b) The ratio of the probability of 3 successes in 5 independent trials to the probability of 2 [6] successes in 5 independent trials is 1:4. What is the probability of 4 successes in 6 independent trials?
 - Using Rayleigh-Ritz Method find the solution of $I = \int_0^1 (2xy + y^2 y'^2) dx$ where [8] $0 \le x \le 1$ and y(0) = y(1) = 0.
- Find the line of regression of Y on X for following data Q.4 [6] x: 10 12
 - y: 19 22 24 27 29 33 37. Hence find the value of y at x=15.5 Evaluate $\oint_C \frac{3z^2 + 2z 2}{(z 1)(z 2)} dz$ where C is the curve (i) $|z| = \frac{1}{2}$, (ii) $|z| = \frac{3}{2}$, [6]
 - c) Find the m.g.f. of Poisson's Distribution about origin. Hence find its mean and variance [8]
- a) If x is a continuous random variable with probability distribution function [6]
 - $f(x) = \begin{cases} \frac{x}{6} + k & \text{if } 0 \le x \le 3 \\ 0 & \text{otherwise} \end{cases}$ then find the value of k and P (1 \le x \le 2) b) If $A = \begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} \end{bmatrix}$ then find the values of matrices e^A and 4^A . [6]
- c) Find all possible expansions of $f(z) = \frac{2-z^2}{z(1-z)(2-z)}$. Q.6 a) Evaluate $\int_0^{2\pi} \frac{d\theta}{5+3sin\theta}$ using Cauchy Residue Theorem. [8]
- [6]
 - Show that the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ is derogatory and find its minimal polynomial [6]
 - c) Show that the set of real numbers is a vector space with the operations defined as x + x = 0[8] y = xy be addition and $cx = x^c$ be scalar multiplication.