Paper / Subject Code: 51304 / Electrical Network Analysis and Synthesis

Friday, May 24, 2019 02:30 pm - 05:30 pm 1T01123 - S.E.(ELECTRONICS)(Sem III)(Choice Based) / 51304 -ELECTRICAL NETWORK ANALYSIS AND SYNTHESIS 59648

(3 Hours)

Total Marks: 80

NB: (1) Question No. 1 is compulsory.

- (2) Attempt any three questions from the remaining.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data if required.
- 1. (a) By constructing Millman's equivalent voltage source at the left of terminals a and b in the given circuit, find the current I. (5)

(b) A network and its pole zero diagram are shown in the figure. Determine the values of R, L, C if Z(0)=1.

- (c) Obtain Z- parameters in terms of ABCD parameters.
- (5)(d) Explain various types of filters. (5)
- 2. (a) Find the current through the 1 Ω resistor in the given network (8)

TURN OVER

(5)

Paper / Subject Code: 51304 / Electrical Network Analysis and Synthesis

(b) Find the value of load impedance Z_L so that maximum power can be transferred to it in the network of figure. Find maximum power. (6)

- (c) Design a constant-k low-pass T and π section filters having cut-off frequency of 4kHz (6)and nominal impedance of 500 Ω .
- 3. (a) Check whether the following polynomials are Hurwitz polynomials: (10)

(i)
$$F(s) = s^4+s^3+4s^2+2s+3$$

(ii) $F(s) = (s+2)^3$

(ii)
$$F(s) = (s+2)^3$$

(b) Find the voltage across the 15 Ω resistor in the given network using mesh analysis. (10)

4. (a) Test whether the following functions are positive real functions: (10)

(i)
$$F(s) = \frac{s^3 + 6s^2 + 7s + 3}{s^2 + 2s + 1}$$

(ii)
$$F(s) = \frac{s(s+3)(s+5)}{(s+1)(s+4)}$$

(b) The network shown in figure has attained steady state with the switch closed for t < 0. At t=0, the switch is opened. Obtain i(t) for t > 0. (10)

TURN OVER

Paper / Subject Code: 51304 / Electrical Network Analysis and Synthesis

5. (a) Realize Cauer Form I and Cauer Form II of the following LC impedance function. (8)

$$Z(s) = \frac{(s+1)(s+3)}{s(s+2)}$$

(b) Determine Y-parameters for the circuit given in figure. (6)

- (c) The voltage V(s) of a network is given by $V(s) = \frac{3s}{(s+2)(s^2+2s+2)}$. Plot its pole-zero diagram and hence obtain v(t). (6)
- 6. (a) In the circuit given, switch is changed from position 1 to position 2 at time t=0. Find i, $\frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at time $t=0^+$.

(b) Find the transmission parameters of the resulting circuit when both are in cascade connection. (10)

