(3 Hours) [Total Marks: 80 ## Q.P. Code: 4812 | N. | B. : | (1)(2)(3) | Questions No.1 is compulsory and Solve any three questions from the remaining questions. Assume suitable data if necessary. Draw neat and clean Figures. | | | |----|------------|---|--|----|--| | 1. | (a)
(b) | Det
300 | at are nonideal effects in BJT? Explain any one nonideal effect in BJT. ermine the ideal reverse saturation current density in silicon P-N diode at 0 k Given Na=Nd= 10^{16} cm ⁻³ , ni= 1.5×10^{10} cm ⁻³ = 25 cm ² /s er= 11.7 , Dp= 10 cm ² /s τ po= τ no= 5×10^{-7} s | | | | | (c)
(d) | Wit | h neat diagram explain the operation of UJT relaxation oscillator. npare photodiode with phototransistor. | | | | 2. | (a) | Draw energy band diagram of P-N junction for zero, forward, reverse bias clearly showing junction diagram, depletion width, fermi energy level and barrier potential. | | | | | | (b) | Cal
elec
Cor
Nd= | culate the theoretical barrier height, built in potential barrier and maximum stric field in a metal semiconductor diode for zero applied biasusider a contact between tungsten and n type silicon doped to =10 ¹⁶ cm ⁻³ at T=300k. | 1(| | | | | silio | metal work function for tungsten is $\phi m=4.55V$ and electron a affinity for con is $x=4.01V$.
=2.8x10 ¹⁹ cm ⁻³ , K=1.38x10 ⁻²³ J/K, $\epsilon s=11.7x8.85x10^{-14}$, $\epsilon =1.6x10^{-19}c$ | | | | 3. | (a) | Cal | culate the threshold voltage V_{TO} at $V_{SB}=0$, for a polysilicon gate n channel of transistor with the following parameters - | 1(| | substrate doping density NA=10¹⁶cm⁻³ polysilicon gate doping density Derive the drain current equation ID for MOSFET in ohmic and saturation 10 ND=2x10²⁰cm⁻³ gate oxide thickness tox=500A⁰ oxide Interface fixed 4. (a) Draw and explain construction, working, characteristics of JFET. Explain 10 Explain, schottky effect. Derive the position of maximum barrier Xm. charge density NOX=4x10¹⁰cm⁻² frequency limitation factors. [TURN OVER 10 regions. ## Q.P. Code: 4812 2 | 5. | (a) Draw and explain, construction and working of: (i) HEMT (MODFET) | | | | | | |----|---|---|-------------------|---|--|--| | | /1. \ | (ii) MESFET | | | | | | | (b) | Explain basic structure and characteristics of: | | | | | | | | | (i) SCR | (ii) DIAC | | | | 6. | Solve any four of the following: | | | | | | | | | (a) | Draw and explain | n Ebers-moll model of transistor. | | | | | | (b) | With the help of | circuit diagram and characteristics explain application | | | | | | | of zener diode as | a voltage regulator. | | | | | | (c) | What are optocor | aplers? Explain any one application of eptocoupler. | | | | | | (d) | Sketch and expla | in V-I and C-Vcharacteristics of MCSFET | | | | | | (e) | • | ength modulation with cross section of MOSFET. Write ed with this effect. | | | | | | | | | | |