(3 Hours)

[Total Marks: 80

Q.P. Code: 4812

N.	B. :	(1)(2)(3)	Questions No.1 is compulsory and Solve any three questions from the remaining questions. Assume suitable data if necessary. Draw neat and clean Figures.		
1.	(a) (b)	Det 300	at are nonideal effects in BJT? Explain any one nonideal effect in BJT. ermine the ideal reverse saturation current density in silicon P-N diode at 0 k Given Na=Nd= 10^{16} cm ⁻³ , ni= 1.5×10^{10} cm ⁻³ = 25 cm ² /s er= 11.7 , Dp= 10 cm ² /s τ po= τ no= 5×10^{-7} s		
	(c) (d)	Wit	h neat diagram explain the operation of UJT relaxation oscillator. npare photodiode with phototransistor.		
2.	(a)	Draw energy band diagram of P-N junction for zero, forward, reverse bias clearly showing junction diagram, depletion width, fermi energy level and barrier potential.			
	(b)	Cal elec Cor Nd=	culate the theoretical barrier height, built in potential barrier and maximum stric field in a metal semiconductor diode for zero applied biasusider a contact between tungsten and n type silicon doped to =10 ¹⁶ cm ⁻³ at T=300k.	1(
		silio	metal work function for tungsten is $\phi m=4.55V$ and electron a affinity for con is $x=4.01V$. =2.8x10 ¹⁹ cm ⁻³ , K=1.38x10 ⁻²³ J/K, $\epsilon s=11.7x8.85x10^{-14}$, $\epsilon =1.6x10^{-19}c$		
3.	(a)	Cal	culate the threshold voltage V_{TO} at $V_{SB}=0$, for a polysilicon gate n channel of transistor with the following parameters -	1(

substrate doping density NA=10¹⁶cm⁻³ polysilicon gate doping density

Derive the drain current equation ID for MOSFET in ohmic and saturation 10

ND=2x10²⁰cm⁻³ gate oxide thickness tox=500A⁰ oxide Interface fixed

4. (a) Draw and explain construction, working, characteristics of JFET. Explain 10

Explain, schottky effect. Derive the position of maximum barrier Xm.

charge density NOX=4x10¹⁰cm⁻²

frequency limitation factors.

[TURN OVER

10

regions.

Q.P. Code: 4812

2

5.	(a) Draw and explain, construction and working of: (i) HEMT (MODFET)					
	/1. \	(ii) MESFET				
	(b)	Explain basic structure and characteristics of:				
			(i) SCR	(ii) DIAC		
6.	Solve any four of the following:					
		(a)	Draw and explain	n Ebers-moll model of transistor.		
		(b)	With the help of	circuit diagram and characteristics explain application		
			of zener diode as	a voltage regulator.		
		(c)	What are optocor	aplers? Explain any one application of eptocoupler.		
		(d)	Sketch and expla	in V-I and C-Vcharacteristics of MCSFET		
		(e)	•	ength modulation with cross section of MOSFET. Write ed with this effect.		