Sem III CB4S (Elchomics)

Design

(3 hours)

Total Marks:80

N.B.:

				100		-
1.	Out	estion	No.	1 18	comp	oulsory.

- 2. Attempt any 3Questions from the remaining 5 Questions
- 3. Assume suitable data, wherever necessary

Q. No	Solve any four	Marks
Q 1.(a)	Write a truth table of half adder and write a VHDL code for half adder	5
Q 1.(b)	Explain advantages of JTAG architecture	5
Q 1.(c)	Explain advantages and drawback of synchronous counter.	5
Q 1.(d)	Explain the following terms: 1. Noise margin 2. Noise immunity 3. Propagation delay with reference to digital ICs	5
Q 1.(e)	Differentiate between multiplexer and demultiplexer	5
Q2.(a)	Design a Meal type sequence detector to detect three or more consecutive 1's in a string of bits coming through an input line.	10
Q 2.(b)	What are universal gates? Why are they called so? Implement XOR and XNOR function using all NAND gates.	10
Q 3.(a)		10

Analyze the sequential state machine shown in figure and obtain state diagram for the same

- Obtain excitation table for JK flip flop and convert JK flip flop to T flip flop.
- Q 4.(a) Draw a circuit diagram of 2 input TTL NAND gate and Explain the interfacing of 10 TTL and CMOS.

10

Q4.(b)	Design a MOD10 asynchronous counter using T flip flop	1
Q5(a)	Design a combinational circuit using a suitable PAL considering the following Boolean expressions. Use a PAL with four inputs and four outputs and three wide AND OR structure.	1
× *	$W(a,b,c,d) = \sum m(2,12,13)$ $X(a,b,c,d) = \sum m(7,8,9,10,11,12,13,14,15)$	Æ
Q5(b)	Design 4 bit Johnson counter using J-K flip flop. Explain its working using waveform	10
Q6(a)	Write short notes on 1. Stuck at zero and stuck at I fault. 2. Entity declaration and architecture declaration. 3. FPGA architecture 4. State reduction and state assignment.	20