Q.P. Code: 24009

(3 Hours)

Total Marks: 80

Note:

- Question 1 is compulsory.
- Solve ant three questions from questions no. 2 to 6.
- Assume necessary data wherever necessary.
- Q1 Answer the following questions

20

5

- a) What do you mean by an error? Discuss propagation of error with suitable example.
- b) Write the algorithm for golden section search method.
- c) What is the need for optimization? Explain constrained optimization.
- d) What do you mean by bracketing method? Discuss the methods with suitable example.
- Q2 a) Solve the equation y'' = 8 + 6xy' using 4^{Th} order RK method at x=0.2 correct up to 4decimal places. Initial conditions are x=0, y=0, y'=0.1. The step size h=0.2
- Q2 b) Solve the equation $\frac{dy}{dx} = 2x + y$ using Milne's Predictor-Corrector method. Find y at x = 0.4 and x = 0.5 with step size of 0.1. Given that y(0) = 0.2, y(0.1) = 0.2313, y(0.2) = 0.2870, y(0.3) = 0.3696.
- Q3 a) Write the algorithm for Newton's divided difference interpolation. For the following data, find y at x = 4.8.

X	4	5	7	10	11	13
У	48	100	294	900	1210	2028

Q3 b) Minimize
$$Z = 2x_1^2 + x_2^2$$

subjected to $x_1 + x_2 = 1$
 $x_1, x_2 \ge 0$
Using Lagrange's multiplier method.

Q3 c) What are the basic requirements of Linear programming? Discuss the various terms used in LPP.

Page 1 of 2

Q4 a) Solve the following system of equations using LU method. What are the advantages of this method?

$$x + y + z = 1$$

$$4x + 3y - z = 6$$

$$3x + 5y + 3z = 4$$

Q4 b) Solve using Secant method to obtain root of equation $xe^x - \cos 3x - 0.51 = 0$. Do four iterations. Write the algorithm for the same.

Q5 a)

- Minimize cost $Z=400x_1+800x_2$ subject to $6x_1+2x_2\geq 12$ $2x_1+2x_2\geq 8$ $4x_1+12x_2\geq 24$ $x_1, x_2\geq 0 \text{ using graphical method.}$
- Q5 b) Determine root of equation f(x) = 0.51x sinx using Newton Raphson 10 method for three iterations.
- Q6 a) Using Simplex method solve $\begin{aligned} Max \ Z &= 3x_1 + 2x_2 \\ subjected \ to \ x_1 + x_2 &\leq 4 \\ x_1 x_2 &\leq 2 \\ x_1, x_2 &\geq 0 \end{aligned}$
- Solve the equation $dy/dx = 1 + xy^2$ with y(0) = 0.2 using Adam's Bashforth method. Determine y at x=0.5 with a step size of 0.1.

Page 2 of 2