

Paper / Subject Code: 40606 / Electrical Networks

S. E. CElectrical)

semIV

choice base

10 8 PRI 100

(3 Hours)

[Total Marks: 80

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Answer any three from the remaining five questions.
 - (3) Assume suitable data if necessary and justify the same.
- 1. Answer any four.

[20]

- (a) Define the terms oriented graph, tree and loop.
- (b) Using Laplace transform, obtain the expression for current in impure inductor when a unit ramp signal is applied.
- (c) Derive the condition for reciprocity in transmission parameters.
- (d) State the various properties of LC driving point function.
- (e) Using superposition theorem, find current Ix of network given in Fig.1

Q2a Obtain Thevenin's equivalent of network shown in Fig. 2

- [8]
- Q2b For the graph shown in Fig. 3, write the tieset matrix and f-cutset matrix.
- [8]

Q2c Draw the dual of the network shown in Fig. 4

[4]

59690

Page 1 of 3

S.E. CElectrical) semIV

choice

Q3b Write the mesh equations for the circuit shown in Fig. 5

(c) For the network shown in Fig.6, steady state is reached with the switch closed. The switch is opened at t = 0. Obtain expressions for iL(t) and vr(t)

Q4a Using differential method, derive the expression to current in a series RL circuit. Draw its characteristics and define time constant.

Q4b Mention the restrictions on pole and zero locations for driving point functions.

[4]

Q4c Find the current Lin the network shown in Fig.7, using superposition theorem

[10]

59690

Page 2 of 3

S.E. CE(ectrical) Sem IV choice ba

Sem IV

choice

Q5a The network shown in Fig.8 has acquired steady state at t < 0 with the switch closed. The 1101 switch is opened at t = 0. Determine v(t).

Q5b For the network shown in Fig.9, find Z and h - parameters.

Q6a Find the short circuit parameters for the network shown in Fig 10.

The voltage V(s) of a network is given by V(s)

Plot its pole - zero

diagram and hence obtain v(t) using graphical method.

59690

Page 3 of 3