QP Code: 12543 | | (3 Hours) | [Total Marks: 80 | |--------|--|-------------------| | N.B: | Question No. 1 is compulsory. Attempt any three questions from remaining. Assume suitable data wherever necessary. | | | 1. | (a) Prove A. (A+B) = A, stating all the rules used. (b) Explain two opamp parameters. (c) Convert following:— (i) (101101)₂ to gray code | 4 4 4 | | | (ii) (247.6875)₁₀ to octal. (d) Design full adder using NAND gate. (e) Explain hazards in combinational logic circuits. | 4 | | 2. | (a) Explain 555 timer working as monostable multivibrator. (b) Explain an instrumentation amplifier and mention to applications | 10 | | 3. | (a) Design mod-12 asynchronous counter using JK flip flop.
(b) Minimize the expression using K map and implement using gates $F = \sum m(0, 5, 9, 12, 13, 14, 15) + \alpha(1, 2, 3, 4)$ | 10
10 | | 4. | (a) Explain successive approximation type ADC.(b) Explain noise margin and fan out. | 10 | | 5. | (a) Implement following expression $F(A, B, C) = \sum m(0, 2, 5, 6, 7)$
(i) $8:1 \text{ Mux (one)}$ | | | υ
μ | (ii) 4:1 Mux (two) (b) Explain high pass filter along with its frequency response. | 10 | | 6. | (a) Explain carry look ahead adder. (b) Convert JK to SR flip flop. (c) Write short note on interfacing of logic families. | 10
5
5 | | | | |