S.E. Seon III (CBGS) (COMPUTER SIT.). AM-III 2 dullo-

Q.P. Code : 5067

(3 Hours)

[Total Marks : 80

Instructions:

I) Question No. 1 is compulsory.	
2) Attempt any THREE of the remaining.	
3) Figures to the right indicate full marks.	
Q 1. A) Find Laplace of $\{t^5 cosht\}$	(5)
B) Find Fourier series for $f(x) = 1 - x^2$ in (-1, 1)	(5)
C) Find a, b, c, d, e if,	
$f(z) = (ax^4 + bx^2y^2 + cy^4 + dx^2 - 2y^2) + i(4x^3y - exy^3 + 4xy)$ is analytic	(5)
D) Prove that $\nabla\left(\frac{1}{r}\right) = -\frac{r}{r^3}$	(5)
Q.2) A) If $f(z) = u + iv$ is analytic and $u + v = \frac{2 \sin 2x}{e^{2y} + e^{-2y} - 2 \cos 2x}$, find $f(z)^{-1}$	(6)
B) Find inverse Z-transform of $f(z) = \frac{z+2}{z^2 - 2z+1}$ for $ z > 1$	(6)
C) Find Fourier series for $f(x) = \sqrt{1 - \cos x}$ in (0, 2π)	
Hence, deduce that $\frac{1}{2} = \sum_{1}^{\infty} \frac{1}{4n^2 - 1}$	(8)
20 ×	
Q.3) A) Find L ⁻¹ $\left\{ \frac{1}{(s-2)^{\frac{1}{s}}(s+3)} \right\}$ using Convolution theorem	(6)
B) Prove that $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = (3x^2-1)/2$ are orthogonal over (-1, 1)	(6)
C) Verify Green's theorem for $\int_c \overline{F} \cdot \overline{dr}$ where $\overline{F} = (x^2 - y^2)i + (x+y)j$ and c is t	he

triangle with vertices (0,0), (1,1), (2,1)

[TURN OVER

(8)

MD-Con. 7526-15.

Q.P. Code : 5067

Q.4) A) Find Laplace Transform of $f(t) = |sinpt|, t \ge 0$ (6) B) Show that $\overline{F} = (ysinz-sinx) i + (xsinz+2yz) j + (xycosz+y^2) k is irrotational.$ Hence, find its scalar potential. (6) C) Obtain Fourier expansion of $f(x) = x + \frac{\pi}{2}$ where $-\pi < x < 0$ $=\frac{\pi}{2}$ - x where $0 < x < \pi$ Hence, deduce that (i) $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ (ii) $\frac{\pi^4}{96} = \frac{1}{14} + \frac{1}{34} + \frac{1}{54} + \dots$ (8) Q.5) A) Using Gauss Divergence theorem to evaluate $\iint_{S} \overline{N} \cdot \overline{F} ds$ where $\overline{F} = 4xi - 2y^{2}j + z^{2}k$ and S is the region bounded by $x^2 + y^2 = 4$, z = 0, z = 3(6) B) Find $Z\{2^k cos(3k+2)\}$, $k \ge 0$ (6) C) Solve $(D^2+2D+5)y = e^{-t}sint$, with y(0)=0 and y'(0)=1(8) Q.6) A) Find L⁻¹ $\left\{ \tan^{-1} \left(\frac{2}{s^2} \right) \right\}$ (6) B) Find the bilinear transformation which maps the points 2, i, -2 onto points 1, i, -1 by using cross-ratio property. (6) C) Find Fourier Sine integral representation for $f(x) = \frac{e^{-ax}}{x}$ (8)

2

MD-Con. 7526-15.