S.Ersern IH ($C B C_{S}$) (computer s I.T.).

 AM-IIIQ.P. Code: 5067

(3 Hours)
[Total Marks : $\mathbf{8 0}$

Instructions:

1) Question No. 1 is compulsory.
2) Attempt any THREE of the remaining.
3) Figures to the right indicate full marks.

Q 1. A) Find Laplace of $\left\{t^{5} \cosh t\right\}$
B) Find Fourier series for $\mathrm{f}(\mathrm{x})=1-x^{2}$ in $(-1,1)$
C) Find a, b, c, d, e if,

$$
\begin{equation*}
f(z)=\left(a x^{4}+b x^{2} y^{2}+c y^{4}+d x^{2}-2 y^{2}\right)+i\left(4 x^{3} y-e x y^{3}+4 x y\right) \text { is analytic } \tag{5}
\end{equation*}
$$

D) Prove that $\nabla\left(\frac{1}{r}\right)=-\frac{r}{r^{3}}$
Q.2) A) If $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is analytic and $\mathrm{u}+\mathrm{v}=\frac{3 \sin 2 x}{e^{2 y}+e^{-2} 2 y_{-2} \cos 2 x}$, find $\mathrm{f}(\mathrm{z})^{-}$
B) Find inverse Z-transform of $\mathrm{f}(\mathrm{z})=\frac{z+2}{z^{2}-2 z+1}$ for $|z|>1$
C) Find Fourier series for $f(x)=\sqrt{1-\cos x}$ in $(0,2 \pi)$

Hence, deduce that $\frac{1}{2}=\sum_{2}^{\infty} \frac{1}{4} \frac{1}{2}$
Q.3) A) Find $L^{-1}\left\{\frac{1}{(s-3)^{*}(s+3)}\right\}$ using Convolution theorem
B) Prove thai: $f_{1}(x)=1, f_{2}(x)=x, f_{3}(x)=\left(3 x^{2}-1\right) / 2$ are orthogonal over $(-1,1)$
C) Verify Green's theorem for $\int_{c} \bar{F}, \overline{d r}$ where $\bar{F}=\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right) \mathrm{i}+(\mathrm{x}+\mathrm{y}) \mathrm{j}$ and c is the triangle with vertices $(0,0),(1,1),(2,1)$
2.
Q.4) A) Find Laplace Transform of $f(t)=|\sin p t|, t \geq 0$
B) Show that $\bar{F}=(y \sin z-\sin x) i+(x \sin z+2 y z) j+\left(x y \cos z+y^{2}\right) k$ is irrotational.

Hence, find its scalar potential.
C) Obtain Fourier expansion of $\mathrm{f}(\mathrm{x})=\mathrm{x}+\frac{\pi}{2}$ where $-\pi<x<0$

$$
=\frac{\pi}{2}-x \text { where } 0<x<\pi
$$

Hence, deduce that (i) $\frac{\pi^{2}}{8}=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots$

$$
\begin{equation*}
\text { (ii) } \frac{\pi^{4}}{96}=\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\ldots \tag{8}
\end{equation*}
$$

Q.5) A) Using Gauss Divergence theorem to evaluate $\iint_{s} \bar{N} \cdot \bar{F} d s$ where $\overline{\bar{F}}-4 \mathrm{xi}-2 \mathrm{y}^{2} \mathrm{j}+z^{2} \mathrm{k}$ and S is the region bounded by $x^{2}+y^{2}=4, z=0, z=3$
B) Find $Z\left\{2^{k} \cos (3 k+2)\right\}, k \geq 0$
C) Solve $\left(\mathrm{D}^{2}+2 \mathrm{D}+5\right) \mathrm{y}=e^{-t}$ sint, with $\mathrm{y}(0)=0$ and $\mathrm{y}^{\prime}(0)=1$
Q.6) A) Find $L^{-1}\left\{\tan ^{-1}\left(\frac{2}{s^{2}}\right)\right\}$

- B) Find the bilinear transformation which maps the points $2, i,-2$ onto points $1, i,-1$ by using cross-ratio property.
C) Find Fourier Sine integra: representation for $\mathrm{f}(\mathrm{x})=\frac{e^{-a x}}{x}$

