3/12/15

QP Code : 5162

(3 Hours)

S.E. computer sem III ((BG))

Bata structures

[Max Marks 80

IN.				
	(1) Question no. 1 is compulsation			
	(2) Attempt and 2 form (1)			
	(2) Attempt any 5 from the remaining questions.			51
	(5) Assume suitable data if necessary.			Z
	(4) Figures to right indicate full marks			
	e Bertandute full mat Ks.			100
O1(a)	Write a function to the		1-	~
Q1(1)	white a function to implement an HUFFMAN coding given a symbol			
	and its frequency occurrence.	-10	. O`-	
Q1(b)	Write a function to count the leaf nodes in Binem the		T	
	nodes in Binary tree	10		
			E.	
02(a)	Transfer T to to the second	- 0	\sim	
$Q^2(a)$	Explain Linked list as an ADT. Write a function for deletion of a node	- O		
	from Doubly linked list?	<10 ⁻		
Q2(b)	What do you mean by Sparse metrics a II			
• • • •	matrix using Links 111 + 9.5	10	1	
02(-)	main using Linked list? Support your answer with an example	S T		
Q ₂ (a)	Explain STACK as ADT ? Write a function in C to convert profit	- <u>-</u> -		
	expression to postfix expression	· 10		
Q3(b)	Write a function in C to maintain 2 starts			
O4(a)	Explain Queue as ADT 9 million 2 stacks in a single array.	10		
× ·(••)	displand Queue as AD1 7 write a function in C to insert, delete and	10		
0400	display elements in Circular Queue.	10		
Q4(0)	Explain the concept of threaded binary search tree of the			
	declaration of a node in threaded binary search two we the	10		
	for inorder traversal of threaded bind bind			
O5(a)	What are different wether to a			-
Q=(=)	detail with the stands for traversing the graph? Explain DFS in	ŤÓ		
064	detail with an example. Write a function for DFS	10		
Q5(b)	Write a function for creating a tree if IN-ORDER trausant and Roam			
	OREDER traversal of a tree is given	10		
O6(a)	Write an algorithm for CL 11			
(•(•)	while all algorithm for Shell sort. Sort the following numbers in	10		
	ascending order 23, 12, 45, 54, 76, 57, 88, 97, 54 using shell sort	10.		
	Show output after each pass.			
Q6(b)	Explain Index sequential Search with an example			
	· · · · · · · · · · · · · · · · · · ·	10		
	i i i i i i i i i i i i i i i i i i i			
		10		
	29			

MD-Con. 9617-15.

20,00