NB.

1. Question No 1. Is compulsory
2. Solve any THREE questions out of remaining five questions
3. Assumption made should be clearly stated
4. Figure to the right indicates full marks

1 (a) Show that if any.seven points are chosen in a regular hexagon whose sides are of 1 unit, then two of them must be no further apart than 1 unit.
(b) Determine the number of edges in a graph with 6 nodes, 2 nodes of degree 4 and 4 nodes of degree 2. Draw two such graphs.
(c) $6^{n+2}+7^{2 n+1}$ is divisible by 43
(d) Draw the Hesse diagram of D_{60}. Also find whether it is a lattice.
2. (a) Define injective, surjective and bijective functions. If $f: R \rightarrow R$ and $g: R \rightarrow R$ defined by $f(x)=x+2$ and $g(x)=x^{2}$. Find i) $f \circ g \circ f$ ii) $g \circ f \circ g$
(b) It was found that in a class, 80 students are passed in English, 60 in Science and 50 in Mathematics. It was also found that 30 students passed in both Efeglish and Science, 15 students passed in both English and Mäthematićs and 20 students passed in both Mathematics and Science, 10 students passed in. all threq.subjects. If there are 150 students in the class, find
(i) How many students passed in at least one sreject?e:
(ii) How many students passed in English onion
(iii) How many students failed in all three subjects?
(c) Let $S=\{1,2,3,4,5\}$ and $A=S X S$. Define the following relation R on A : (a, b) $R(c, d)$ if and only if $a d=b c$. Showfhat R is an equivalence relation and compute A / R.
3 (a) If 11 people are chosen from a set of $A=\{1,2,3, \ldots, \ldots, 20$), then one of them is multiple. of other.
(b) If $f: A \rightarrow B$ and if $g: B \rightarrow C$ ageboth one-one and onto, then $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$
(c) Determine whether the baum Hesse diagram represents a lattice

(a) $K(G, *)$ is an Abelian group, then for all $a, b \in G$ show that $(a * b)^{n}=a^{n}+b^{n}$. <(use mathematical induction).

4 (a) Let $G=\{1,2,3,4,5,6\}$. Prove that $\left(G, x_{7}\right)$ is a finite Abelian group with respect to
multiplication modulo 7 .
(b)

Let $H=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ be parity check matrix.
Determine the group code $e_{H}: B^{2} \rightarrow B^{5}$
(c) Find the generating functions for the following sequence
i)
$0,0,0,1,2,3,4,5,6,7$
7.
$6,-6,6,-6,6,-6,6$,
ii)

5 (a) Iffunction f is an isomorphism from semigroup $(S, *)$ to $(T, *)$, thon prove that f^{-1} is an isomorphism from ($T, *^{\prime}$) to ($S, *$)
(b) Consider the chain of divisors of 4 and 9, i.e., $L_{1}=\{1,2,4\}$ aht $L_{2}=\{1,3,9\}$

Find the Hasse diagram of $L_{1} \times L_{2}$
(c) Show that the set $G=\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, 0\right.$ 犈 $)$ where the functions are defined by
$f_{1}(x)=x \quad f_{2}(x)=1-x \quad f_{3}(x)=\frac{x}{x} \quad f_{4}(x)=\frac{1}{x} \quad f_{5}(x)=\frac{1}{1-x} \quad f_{6}(x)=1-\frac{1}{x}$
is a group under composition of funstions. Frame the comonsition table

6 (a) Determine whether following graphs are isomorphic
(c) Show that $(\neg q \wedge(p \Rightarrow q)) \Longrightarrow \neg p$ is a tautology

MD-Con. 11522-15.

