S.E. (SEM - III) (CBSGS) (COMPUTER ENGG.) DIGITAL LOGIC DESIGN AND ANALYSIS

QP Code: 30702

(3 Hours)

N.B. (1) Question No. 1 is compulsory

[Total Marks: 80

(-, \dagger)	
(2)Assume suitable data if necessary	
(3)Attempt any three questions from remaining questions	
1	
(a) Convert (532.125) ₈ into decimal, binary and hexadecimal.	(3)
(b) Convert (47.3), BCD, Excess-3 and Gray code.	(3)
(c) Subtract using 1's and 2's complement method $(56)_{10} - (76)_{10}$.	(4)
(d) Obtain odd parity Hamming code for 1011.	(2)
(e) Implement Ex-OR gate using NOR gate only.	(2)
(f) Perform the following operations without changing the base.	(4)
i) $(314)_8 + (737)_8$ ii) $(312.40)_5 + (214.33)_5$	
(g) State and prove Demorgans theorem.	(2)
2 (a) Reduce equation using Quine McCluskey method and realize circuit using basic gates.	(10)
$F(A,B,C,D) = \sum m (1,3,7,9,10,11,13,15).$	
(b) Design 8 bit BCD adder.	(10)
3 (a) Design a logic circuit to convert Gray to BCD code.	(10)
(b) Implement the following using only one 8:1 Mux and few gates.	(5)
$F(A,B,C,D) = \sum m (0,3,5,7,9,13,15)$	t .
(c) Design a full adder circuit using half adders and some gates.	(5)
4 (a) Compare TTL and CMOS logic.	(5)
(b) Implement Full subtractor using Demultiplexer.	(5)
(c) Explain 4 bit Universal shift register.	(10)
	,(=,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,
5 (a) Design mod 5 asynchronous UP counter.	(10)
(b) Convert SR flipflop to JK flipflop and D flipflop.	(10)
	, ,
6 Write short note on (any four):-	(20)
(a) VHDL	, ,
(b) Decade Counter	
(c) State table	
(d) 4-bit Magnitude comparator	
(e) Multivibrators	