		(3 Hours) (Total Marks :	80)
N.B	:	1) Question no 1 is compulsory.	7,00
	,	2) Attempt any three questions out of remaining five questions.	
		3) Assume any additional data if necessary and state clearly.	
	4	4) Draw neat figures as required .	450 500
1.	An	Answer any 4 of the following.	
	a.	Derive Dupit's Equation.	300
	b.	Explain different steps in solving distribution network by Hardy Cross method.	
	c.	Explain boundary layer separation and its control measures.	
	d.	Explain propagation of pressure waves in a compressible fluid.	91. 50%.
	e.	Explain kinetic correction factor and momentum correction factor.	
	f.	Explain Prandlt's mixing length theory.	
2.	a.	In a pipe of 300 mm diameter, the centre line velocity and velocity at a point 2.3 m/s	10
		and 2 m/s resp. Assuming the flow in pipe to be turbulent find discharge through the	
		pipe, co-efficient of friction, height of roughness projections.	
	b.	An aeroplane is flying at 1000 km/hr through still air having a pressure of	10
		78.5 kN/m ² (abs) and temp 8 °C. Calculate on stagnation point on the nose of plane	
		1) Stagnation Pressure 2) Stagnation Temp. 3) Stagnation Density.	
		Take $R = 287 \text{ J/kg K}$ and $k = 1.4$.	
3	a.	Two sharp ended pipes of diameter 50 mm and 100 mm resp. each of length 100m	10
	Á	resp. is connected in parallel between two reservoirs which have a difference of level	
4	30	of 10m. If friction factor for each pipe is 0.32 ,calculate :-	
90		1) Rate of flow for each pipe	
19,00 C	700	2) The diameter of single pipe 100 m long which would give the same discharge,	
10,00	500	if it were substituted for the original two pipes.	
	b.	Derive Prandlt's universal velocity distribution for turbulent flow in pipes.	10
4	a.	A siphon of diameter 200 mm connects two reservoirs having a difference in	10
250	105 20.05	elevation of 12m. The total length of siphon is 600 m and the summit is 4m above	10
20 CD	200	the water level in the upper reservoir. If the separation takes place at 2.8 m of water	
\$ \$ \$ \$ \$	325	absolute, find the maximum length of siphon from upper reservoir to the summit.	
300	800	Take f=0.004 and atmospheric pressure=10.3 m of water.	
		1 mater.	

60500 Page 1 of 2

Paper / Subject Code: 40406 / Fluid Mechanics -II

b. Water is flowing in a pipe of 140mm diameter with a velocity of 2.5 m/s. When it is suddenly brought to rest by closing the valve. Find the pressure rise assuming pipe is elastic. E=206 GN/m², Poisson's ratio= 0.25,

K for water = 2.06 GN/m^2 Pipe wall is 5mm thick.

- c Explain Hydraulic Gradient Line and Total Energy Line. 06
- a. A lubricating oil of viscosity 1 poise and sp.gr.0.9 is pumped through 30 mm 10 diameter pipe. If the pressure drops per meter length of pipe is 20 kN/m².

 Determine 1) the mass flow rate in kg/min 2) the shear stress at the pipe wall 3) Reynolds number of flow 4) The power required per 50 m length of the pipe to maintain the flow.
 - b. The velocity distribution in boundary layer is given by $\frac{u}{u} = 2(\frac{y}{\delta}) (\frac{y}{\delta})^2$

 δ =boundary layer thickness

Calculate the displacement thickness, momentum thickness and energy thickness.

- a. Experiments were conducted in a wind tunnel with a wind speed of 60 km/hr on a 10 flat plate of size 2m long and 1 m wide. The density of air is 1.15kg/m³. The coefficient of lift and drag 0.75 and 0.15 resp. Determine:-
 - 1) Lift Force 2) Drag force 3) Resultant force 4) Direction of resultant force
 - 5) Power exerted by air on plate.
 - b. In a rough pipe of diameter 0.5 m and length 4400 m water is flowing at the rate of 0.5 m³/s. If the average height of roughness is 0.48 mm, find power required to maintain this flow.
 - c Explain Hydraudynamically smooth and rough boundaries.

60500 Page 2 of 2