1T00524 - S.E.(CHEMICAL)(Sem IV) (Choice Based) / 40305 - MECHANICAL EQUIPMENT DESIGN (MED) | | | [Time: Three Hours] | [Marks:80] | |--------|--------------|---|--| | N.E | 3 . 1 | Question ONE is compulsory | | | | 2 | Attempt any THREE questions out of the remaining | | | | 3 | Figure to the right indicate full marks | 1, 1, 1, 10, 10, 10, 10, 10, 10, 10, 10, | | | 4 | places carries marks | at appropriate | | | 5 | Assume suitable data if necessary and indicate it clearly. | | | 1 | | Write short notes on any four. | (20) | | | (a) | Codes and Standards. | | | | (b) | Thermal Stresses. | 10,00 P. B. C. | | | (c) | Design Pressure and Design Temperature. | 35 25 25 25 A | | | (d) | Saddle Supports for Horizontal Vessel. | 5000 | | | (e) | Metal Joining Technique. | | | | | | | | 2 | (a) | Design a pressure vessel for the following specifications: i) Shell | (14) | | | | Internal Diameter = 1200 mm | | | | | Material = Stainless steel (SS 304) | | | | | Permissible stress for SS at 150° C = 130 N/mm ² | | | | ~ | Design pressure = 0.6 N/mm^2 | | | | 2000 | ii) Head (Standard Torispherical) | | | 4 | | Crown Radius = 1200 mm Knuckle radius = 6 % of Crown radius | | | 37 | 40,00 | Material = Stainless steel (SS 304) | | | , 20°0 | 3,74 | iii) Flange, Gasket and bolt data: | | | 7,78 | | Gasket factor = 2.0 | | | A DE V | 7,00 | Minimum design gasket seating stress = 11.2 N/mm ² | | | | DAY. | Flange material = asbestos Permissible stress for bolt material = 55 N/mm ² | | | | TP. | Design should consist of the following: | | | 3 | 75,5 | i) Shell ii) Head and iii) Flanges with gasket and bolt. | | | | (b) | Draw the different formed heads. | (06) | 71603 Page **1** of **2** | | data: Tank Diameter = 24 m Tank Height = 16 m Material of construction = Steel (IS: 2041) | | |---------|---|--| | | Tank Height = 16 m Material of construction = Steel (IS : 2041) | | | | Material of construction = Steel (IS: 2041) | | | | | J. A. | | | | 95. V. | | | Density of Liquid = 0.001 kg/cm^3 | | | | Density of material = 7.7 gm/cc | 1000 | | | Superimposed load = 1225 N/m ² | DA V | | | Permissible stress = 140 N/mm ² | | | | Design: 1. Shell plate thickness at various height | | | | 2. Conical roof | | | (b) | Draw the different flange faces. | (06) | | (a) | Write a design procedure for Agitation vessel which includes: (i) Shaft subjected to twisting moment only, (ii) Shaft subjected to bending moment only, and (iii) shaft based on critical aread. | (12) | | (h) | | (08) | | (0) | White it design procedures of the second states | (00) | | (a) | Describe the design procedure for reaction vessel with- | (14) | | , , | 1. Plain Jacket | , , | | | 2. Dimple Jacket | | | | 3. Half Coil Jacket | | | (b) | Estimate the optimum pipe diameter for a water flowrate of 14 Kg/sec at 20°C. Carbon steel pipe is used. Density of water is 1000 Kg/m³ and viscosity of water is at 20°C is 1.1 x 10⁻³ Ns/m². Also find whether flow is laminar or turbulent. | (06) | | 500 | Write short notes on any four. | (20) | | (a) | 0,05,05,0 v) 7, 4,4,5,7,7,4,4,5,7,7,4,7,4,4,4,4,4,4,4,4, | () | | (b) | | | | (c) | 8 6 V V S S S V V S C V V S | | | - X - X | 3, 5, 5, 7, 4, 2, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, | | | | | | | | (a) (b) (a) (b) | (a) Write a design procedure for Agitation vessel which includes: (i) Shaft subjected to twisting moment only, (ii) Shaft subjected to bending moment only, and (iii) shaft based on critical speed. (b) Write a design procedure for stuffing box and gland. (a) Describe the design procedure for reaction vessel with- Plain Jacket Dimple Jacket Dimple Jacket Allf Coil Jacket (b) Estimate the optimum pipe diameter for a water flowrate of 14 Kg/sec at 20°C. Carbon steel pipe is used. Density of water is 1000 Kg/m³ and viscosity of water is at 20°C is 1.1 x 10°3 Ns/m². Also find whether flow is laminar or turbulent. Write short notes on any four. (a) Essential accessories of floating roof tank. (b) Losses in storage of volatile liquids. (c) Skirt Bearing plate. (d) Radiographic examination. | 71603 Page **2** of **2**