(4 hours) Marks: 80

N.B

- 1. **Question No. 1** is compulsory.
- 2. Attempt any **three** out of remaining **four** questions.
- 3. Assume any suitable data if necessary and indicate it clearly.
- 4. Figures to the right indicate marks.
- 5. Illustrate answers with sketches wherever required.
- 1. Write short notes on any **four.**

20

- a) Losses in storage of volatile liquids.
- b) Gaskets and their selection.
- c) Significance of baffles in Agitation. Draw different types of baffles.
- d) Supports for horizontal vessel.
- e) Classification of Pressure vessel.
- 2. a) Write a design procedure for pressure vessel which includes:

15

- i) Shell ii) torispherical head iii) Flanged joint
- b) Draw the commonly used flange faces.

- 05
- 3. a) The following data refers to a 3 blade propeller operating at 575 rpm.
- 15

Data:	Diameter of vessel = 500 mm
	Diameter of agitator = 150 mm
	Internal pressure in vessel = 0.4 N/mm ²

Specific gravity of liquid in vessel = 1.4 Power number = 1 Overhang of shaft from bearing = 450 m

support

Width of blade = 20 mm
Thickness of blade = 1.5 mm
Shaft material = Steel
Permissible shear stress = 52 N/mm²

Elastic limit in tension = 240

Modulus of elasticity = 1.95×10^5

Key material

Permissible shear stress = 65 N/mm^2 Permissible crushing stress = 130 N/mm^2

Permissible stress for stuffing box = 100 Permissible stress for bolt material = 55

The design should include (i) Shaft (ii) Hub and key (iii) Blade

b) Draw a proportionate drawing of stuffing box.

05

Paper / Subject Code: 40305 / Mechamcal Equipment Design (MED)

4.	a)	A cylindrical storage tank with conical roof and flat bottom has following data:	
		Tank Diameter = 24 m	14
		Tank Height = 16 m	
		Material of construction = Steel (IS: 2041)	
		Density of Liquid = 0.001 kg/cm ³	3000
		Density of material = 7.7 gm/cc	
		Superimposed load = 1225 N/m ²	
		Permissible stress = 140N/mm ²	
		Design: 1 Shell plate thickness at various height	2012
		2 Conical roof.	
	b)	Draw to recommended scale, the above designed storage tank.	06
5.	a)	Describe the design procedure for reaction vessel with-	10
		i) Plain Jacket	
		ii) Half Coil Jacket	
	b)	Describe the design procedure for Skirt support for a vertical cylindrical vessel.	10
6.	Wr	ite short notes on any four.	20
	a)	Standards, codes and their significance.	
	b)	Various theories of failure.	
	c)	Classification of reaction vessel.	
	d)	Various metal forming techniques.	
	e)	Supporting structures for pipelines.	
1 AP AP			
100 B	X, YZ, O		
5 / 20 00 5 / 6 / 20 5 / 6 / 20			
		\$\$ \$\Q\Q\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	