5.E-TV Sem - Chem.

04)12	12013
Chemical Engineering Thermodynam SE/IV/CBGS/CH (30) Q.P.Code No. 5416 (3 Hours) [Total Marks: 80]	ics -
(3 Hours) [Total Marks: 80]	
N.B. (1) Question No. 1 is compulsory. (2) Attempt any three questions out of remaining five questions.	
(3) Figures to the right indicate full marks.	
(4) Assume suitable data, if necessary.	
(-1) / 135 at 1.10 data	,
Q.1 a) State i) Kelvin-Plank statement	05
ii) Clausius statement of second law of thermodynamics.	05
b) Distinguish between extensive and intensive properties.	05
c) State and explain in brief Zeroth law of thermodynamics.	05
d) Explain the procedure to prepare Temperature-Entropy diagramme.	05
Q.2 a) Derive an expression for entropy change of mixing of non-identical ideal gases.	10
b) A Carnot engine operating between 800 °C and 25 °C is used to run a Carnot refrigeral operating between -20°C and 25°C. If the engine absorbs 10 kJ/s from the reservoir at 80 determine the capacity of the refrigerator. Also determine the rate of energy rejection as the reservoir at 25 °C by both the devices.	00 °C,
Q.3 a) An ideal gas undergoes the following reversible processes:	10
i) From an initial state of 343 K and 1 bar it is compressed adiabatically to 423 K.	3.85
ii) It is then cooled to 343 K at constant pressure.	
iii) Finally, it is expanded to its original state isothermally.	
Calculate AU, AH, Q and W for each step as well as for entire cycle. Assume C _v = (3/2)	R
b) Derive an expression for Joule Thomson inversion temperature using van der Waais	equation

MD-Con. 9929-15.

TURN OVER

SE/N/CBGS/CHEM/CET.

2 QP Code: 5416

Q.4 a) Using virial equation of state calculate the molar volume and compressibility factor of isopropanol vapour at 473 k and 10 bar. The virial coefficients are:

$$B = -3.88 \times 10^{-4} \text{ m}^3/\text{moi}$$
 $C = -2.6 \times 10^{-8} \text{ (m}^3/\text{mol})^2$

- b) A block of 10 kg ice at 0°C is dumped in an insulated tank containing 100 kg water at 30°C. Calculate the change in entropy of the mixture and entropy generated. The heat capacity of water is 4.24 kJ/kg K and the latent heat of melting of ice is 333.44 kJ/kg. 10
- Q.5a) Calculate the enthalpy and entropy departures for ethylene gas at 8.25 MPa and 25 °C, assuming that ethylene gas obeys the van der Waals equation of state.
- b) Derive the relation to estimate the enthalpy and entropy departures for gas obeying the Berthelot equation of state given by

$$(P + \frac{a}{Tv^2}) (v - b) = RT$$

Q.6 a) Write a short note on:

- i) Availability and lost work
- ii) Maxwell's relations
- b) A gas obeying the following equation of state: P(V-b) = RT. Where the constant b was found to be 0.2 m³/mol. Over the temperature range 300K to 400K. The heat capacity may be constant at 40 kJ/kmolK Calculate ΔH and ΔS for the following change of state

State 1:
$$P = 10 \text{ bar}$$
, $T = 300 \text{K}$

State 2: $P = 20 \text{ bar}$, $T = 400 \text{K}$

MD-Con. 9929-15.