QP Code:536801

[3 Hou	rs]	[Total Marks: 80]				
 Q.1 is compulsory. Attempt any 3 from the remaining 5 questions. Use graph paper, if required. Assume suitable data if required and justify the 	same					
Q1:A: What you mean by excess and limiting reactant i	n a reaction	[5]				
B. An aqueous solution contains 20 percent ammonia, 60 pe	rcent ammonium nitrate	and 5 percent urea by				
weight. Find available nitrogen content of the solution.		[5]				
C. Ethanol and water forms azeotrope at 96 percent by weight ethanol Find the composition of azeotrope						
by mole percent.		[5]				
D.Explain the concept of adiabatic flame temperature.		[5]				
Q2A. The feed water to a reverse osmosis plant contains 50	000 ppm dissolved solid	s. The feed to product				
ratio is 4:3 on weight basis. The treated water(product) lea	ving the plant contains	600 ppm solids. Find				
dissolved solids content of the concentrated stream(rejected	stream).	[10]				
B.A dye house effluent is found to contain sodium(as Na) a	nd calcium(as Ca) to the	e extent of 245.7 mg/l				
and 37.6 mg/l respectively. This effluent is to be discharged	on the land used for irr	rigation. The tolerance				
limit for Na(%) of total cations (on equivalent basis) is 60.	In order to bring the soc	dium level down to 60				
percent, gypsum(CaSO4) is to be dissolved in effluent. Calc	ulate percentage of Na	in effluent and dosage				
of CaSO ₄ required.		[10]				
Q3:1000 kg of an impure lime stone which analyzes 96 p	ercent CaCO ₃ and 4 pe	rcent inerts is reacted				
with a sulphuric acid solution containing 70 percent H ₂ SO	4 and 30 percent water.	. The reaction mass is				
heated and all the CO ₂ generated is driven off together with	some of the water. The	ne analysis of final				
solid cake in percent is: CaSO ₄ -86.54, CaCO ₃ -3.11, H ₂ SO ₄ -	1.35, H ₂ O-6.23, Inerts-2	2.77				
Calculate: a.The degree of completion of reaction.		[5]				
b. Mass of acid solution fed		[5]				
c. Mass of gas driven off		[5]				
d. Composition of gases driven off.		[5]				
Q4:A. A gas mixture entering an ammonia converter contai	ns H ₂ and N ₂ in mole ra	tio 4:1. The mole ratio				
of these gases in the exit stream is found to be 4.2:1. What	volume of entering gas	ses measured at 500°C				
and 1.013 bar must be fed to the converter to produce 100 to	ons of ammonia per day.	? [10]				
B. Explain the need to have recycle in the processes.		[5]				

QP Code:536801

2

C. Explain the relation between C_p and C_v for an ideal gas.

[5]

- Q5: Explain the concept of heat of formation and heat of combustion. How would you calculate heat of reaction from heat of combustion of product and reactants?
- B. Methane gas is heated from 303 K TO 523 k at atmospheric pressure. Calculate the heat added per kmol methane using Cp⁰ data given below. [10]

 $Cp = a + bT + dT^2 + dT^3$, kj/kmol.k

Gas	a	bx10 ³	C x10 ⁶	dx10 ⁹
methane	19.2494	52.1135	11.973	-11.3173

Q6:A. What you mean by standard heat of formation.

[4]

- B. What you mean by percentage saturation and percentage relative humidity of air water mixture.[4]
- C.Differentiate between proximate and ultimate analysis of fuel.

[4]

D.Explain Hess's law of constant heat summation.

[4]

E.Explain effect of pressure on heat of reaction.

[4]