5

5

6

(3 Hours) [Total Marks : 80

- N.B. (1) Questions No.1 is compulsory.
 - (2) Attempt any three questions out of the remaining five questions.
 - (3) Figures to the right indicate full marks.
- 1. (a) Find the Laplace Transform of $t e^{3t} \sin 4t$.
 - (b) Apply Cayley-Hamilton theorem for the matrix A & hence find 5 $A^{8} = 625 \text{ I, where } A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}.$
 - (c) Evaluate $\int_{c} \bar{z} dz$, where c is the upper half of the circle r = 1.
 - (d) With usual notation find p of Binomial distribution if n = 6, 9P(x = 4) = P(x = 2).
- 2. (a) Find the analytic function whose imaginary part is $v = 3x^2y + 6xy y^3$ show that v is harmonic.
 - (b) Evaluate $\int_{0}^{\infty} \frac{\cos at \cos bt}{t} dt$.
 - (c) Show that the matrix $A = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$ is diagonalizable & find the

diagonal matrix & the transforming matrix.

3. (a) Find inverse Laplace Transform of $\frac{(s+2)^2}{(s^2+4s+8)^2}$ By convolution theorem.

(b) Show that $A = \begin{bmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & 4 \end{bmatrix}$ is derogatory.

(c) Using the Kunh - Tucker conditions solve the following N.L.P.P. 8

Maximise : $z = 2x_1 + 3x_2 - x_1^2 - 2x_2^2$

Subject to : $x_1 + 3x_2 \le 6$

$$5x_1 + 2x_2 \le 10$$

 $x_1, x_2 \geq 0$

6

6

- 4. (a) Find the Bilinear transformation which maps the points z = 1, -i, 2 6 onto the Points w = 0, 2, -i.
 - (b) Find the orthogonal trajectory of the family of curves given by $2x x^3 + 3xy^2 = a$.
 - (c) Using Lagrangian multiplier method solve the following N.L.P.P. 8

Optimise :
$$z = 6x_1^2 + 5x_2^2$$

Subject to :
$$x_1 + 5x_2 = 7$$
, $x_1, x_2 \ge 0$

- 5. (a) Find the eigen values & eigen vectors for $A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{bmatrix}$.
 - (b) Evaluate $\int_{c}^{z^{2}} \frac{z^{2}}{(z-1)^{2}(z+1)} dz \text{ where c is } |z| = 2.$
 - (c) Find:

(i)
$$L^{-1} \left[\frac{s+2}{s^2-4s+13} \right]$$

(ii)
$$L^{-1} \left[\log \left(\frac{s+a}{s+b} \right) \right]$$

 (a) Calculate Spearman's coefficient of rank correlation from the following data:

x of	12	17	22	27	32
y	113	119	117	115	121

- (b) Find the residues of $f(z) = \frac{\sin \pi z}{(z-1)^2 (z-2)}$ at its poles.
- (c) Reduce the following quadratic form to canonical form. Also find its rank & signature

$$21x_1^2 + 11x_2^2 + 2x_3^2 - 8x_2 x_3 + 12x_3 x_1 - 30x_1x_2.$$