## S.E-III Sem - Biotech



Process Calculation

Process Calculation

OP Code: 30786

(3 Hours)

[Total Marks - 80

Note: i) Q.No 1 is compulsory.

- ii) Answer any three of the remaining five questions.
- iii) Assume sultable data where ever necessary.

| a) Calculate the density of chloring gas at 502 K and 15 2 to 1                                                                                                                                                                                                                                                          | Carlotte in the con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b) Wet pulp is found to contain 71% water. After drying it is found that 60% of the original water has been removed. Calculate the mass of water removed per kg dry pulp.                                                                                                                                                | 05<br>05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| c) Prove Pressure% = Mole% = Volume%                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a) A gas mixture has the following composition by volume, SO2 = 8.5%, O2= 10%, N2 = 81.5%. Find (I) Density of gas mixture at 473K and 202.65 Kpa.g (ii) Composition by weight                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| when the same plant is fed with 10% weak liquor and concentrated to 50%. Find the capacity of the plant in terms of solid caustic soda, assuming water evaporation capacity will be same in both the cases.                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20% per pass conversion of CO, the product stream from reactor is fed to condenser where all methanol formed gets condensed and the gases from the condenser are recycled. In order to prevent build-up of inerts in recycle loop, a small portion of gases leaving the condenser is continuously purged. If missed feed | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a) A furnace is fired with fuel oil. The orsat analysis of flue gases by volume is as given below: CO2 = 10.6%, O2 = 6%, N2 = 83.4%. Calculate (i) % excess air (ii) C:H ratio in the fuel oil, assuming fuel doesn't contain nitrogen.                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Explain with one example each.                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a) Write down general energy balance procedure.                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| reaction temperature (iv) Heat of reaction (v) Henry's law                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a) Define (i) yield (ii) Degree if reduction                                                                                                                                                                                                                                                                             | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| b) Aerobic growth of S. Cerevisiae on ethanol is simply described by the following overall reaction:                                                                                                                                                                                                                     | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (1) Determine the coefficients a bit diameter where D.C. of a                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (ii) Determine the biomass yield coefficient and oxygen yield coefficient                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                          | original water has been removed. Calculate the mass of water removed per kg dry pulp.  c) Prove Pressure% = Mole% = Volume%  a) A gas mixture has the following composition by volume, SO2 = 8.5%, O2= 10%, N2 = 81.5%. Find (1) Density of gas mixture at 473K and 202.65 Kpa.g (ii) Composition by weight  b) A multiple effect evaporator system has a capacity of processing 1000 kg per day of caustic soda. When it concentrates weak liquor from 4% to 25% (wt basis), when the same plant is fed with 10% weak liquor and concentrated to 50%. Find the capacity of the plant in terms of solid caustic soda, assuming water evaporation capacity will be same in both the cases.  a) In synthesis of methanol, fresh feed containing 32% CO, 64% H2 and 4% inerts (by volume) is mixed with recycle feed. Mixed feed entering the reactor results in 20% per pass conversion of CO, the product stream from reactor is fed to condenser where all methanol formed gets condensed and the gases from the condenser where all methanol formed gets condensed and the gases from the condenser are recycled. In order to prevent build-up of inerts in recycle loop, a small portion of gases leaving the condenser is continuously purged. If missed feed contains 15 mol% linerts. Calculate (i) Recycle ratio (ii) purge ratio  a) A furnace is fired with fuel oil. The orsat analysis of tipe gases by volume is as given below: CO2 = 10.6%, O2 = 6%, N2 = 83.4%. Calculate (i) % excess air (ii) C:H ratio in the fuel oil, assuming fuel doesn't contain nitrogen.  b) What is steady state material balance and unsteady state material balance? Explain with one example each. a) Write down general energy balance procedure. b) Define (i) limiting reactant and excess reactant (ii) Hess's law (iii) Adiabetic reaction temperature (iv) Heat of reaction (v) Henry's law a) Define (i) yield (ii) Degree if reduction  b) Aerobic growth of <i>S. Cerevisiae</i> on ethanol is simply described by the following overall reaction: C2H <sub>5</sub> OH + aO <sub>2</sub> + bNH <sub>3</sub> — CCH <sub>1.704</sub> No-149O <sub>4.648</sub> + dCO <sub>2</sub> + eH <sub>2</sub> O  (i) |