Sub: PC 18/12/2014

QP Code:14710

(3 Hours)

Total Marks: 80

(1) Question No. 1 is compulsory.

Attempt any three of remaining five questions.

Assume suitable data wherever necessary (i) Stoichiometry (ii) Dalton's law

1 8 DEC 2014 NORA, MUMBAI

(a) Define the following:

- (iii) Raoult's law
- (iv) Ideal gas law
- What is dimentional homogenity? Exlain with an example.

Explain Hess' law of constant Heat summation.

10

10

- (a) Benzene and toluene are to be separated 50,000 kmol/hr of feed is fed to the rectifier. Feed has 45% by wt benzene. Overhead stream has 98% benzene by wt and 8% benzene by wt was found in bottom product. Calculate overhead product rate & % recovery of benzene.
 - (b) 1000 kg of mixed acid needs to be prepared containing 65% sulfuric acid, 30% 10 nithric acid and remaining water by blending the following

- 11.3% HNO₃, 44.4% H₂SO₄ & remaining H₂O

- -Aq 90% HNO,
- -Aq 98% H,SO

Calculate the quantity of each acid required for blending.

Explain step by step procedure of Bucking ham π theorem.

10

10

A gas mixture has the following composition by volume: Ethylene - 30.6%, Benzene - 24.5%, Oxygen - 1.3%, Methane - 15.5%, Ethane - 25%, Nitrogen - 3.1%. Find out (i) The avg molecular weight of gas mixture (ii) The composition by wt.

20

A catalytic reactor is used to produce formaldehyde from methanol by the reaction CH₃OH → HCHO+H₂. A single pass conversion of 70% is achieved in the reactor. The methanol is separated and recycled to the reactor. Calculate the required feed rate of methanol in kmol/hr for 500 kg/hr of formaldehyde produced.

10

(a) In production of SO₃, 100 kmol of SO₂ and 100 kmol of O₂ are fed to a reactor. The % conversion of SO, is 80. Calculate the composition of the product stream on mole basis.

TURN OVER

QP Code:14710

2

(b) In the production of chlorine gas by oxidation of hydrochloric acid gas, air is used 30% excess of that theoretically required. Based on 4 kmol HCl. Calculate (i) the weight ratio of air to hydrochloric acid gas in feed (ii) if the oxidation is 80% complete, find the composition of the product stream on mole basis.

10

- 6. Write a short notes on :-
 - (a) Heat of reaction
 - (b) Heat of formation
 - (c) mole % = vol % = pressure %
 - (d) Specific gravity
 - (e) Distillation & its applications.

GN-Con.:11997-14.

20