Mechanical/Automobile

QP Code: 14535

(3 Hours)

[Total Marks: 80

N.B: (1) Question no.1 is compulsory.

- (2) Answer any three from remaining.
- (3) Figures to the right indicate marks.
- 1. (a) Find laplace transform of t³cost.
 - (b) Find the image of |z ai| = a under the transformation $w = \frac{1}{z}$.
 - (c) Construct an analytic function whose real part is e^{2x} (x cos 2y y sin 2y).
 - (d) Show that the set of functions $\cos nx \, n = 1, 2, 3 \dots$ is orthogonal on $(0, 2\pi)$.
- 2. (a) By using Convolution Theorem. Find invese laplace transform of $\frac{1}{s^2(s+1)^2}$.
 - (b) Find bilinear transformation that maps the points 2, i, 2 onto the point 1, i, -1.
 - (c) Find Fourier Series for $f(x) = \cos mx$ in $(\pi, -\pi)$ where m is not an integer. Deduce 8

that $\cos m\pi = \frac{2m}{\pi} \left(\frac{1}{2m^2} + \frac{1}{m^2 - 1^2} + \frac{1}{m^2 - 2^2} + \frac{1}{m^2 - n^2} \right)$ hence show that

$$\sum_{1}^{\infty} \frac{1}{9n^2 - 1} = \frac{1}{2} - \frac{\pi\sqrt{3}}{18}.$$

- 3. (a) Find Complex form of fourier series $f(x) = e^{3x}$ in 0 < x < 3.
 - (b) Using Crank Nicholoson method solve $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ subject to $0 \le x \le 1$ u(0, t) = 0, u(1, t) = 0, u(x, 0) = 100x(1-x) taking h = 0.25 in one step.
 - (c) Using laplace transform solve $(D^2+2D+5)y = e^{-t}$ sint when y(0) = 0 and y'(0) = 1.
- 4. (a) Evaluate $\int f(z)dz$ along the Parabola $y = 2x^2$ from z = 0 to z = 3 + 18i where 6 $f(z) = x^2 2iy$
 - (b) Find half range cosine series for

$$f(x) = x \qquad 0 < x < \frac{\pi}{2}$$

$$= \pi - x \quad \frac{\pi}{2} < x < \pi$$

(c) Obtain two distinct Laurent's series of $f(z) = \frac{1}{(1+z^2)(z+2)}$ for 1 < |z| < 2 and |z| > 2.

GN-Con.:6443-14.

[TURN OVER

6

- 5. (a) By using Bender Schmidt method solve $\frac{\partial^2 f}{\partial x^2} = \frac{\partial f}{\partial t}$ f(0, t) = f(5, t) = 0. 6 $f(x, 0) = x^2 (25 x^2)$ find f in range taking h = 1 and upto 5 seconds.
 - (b) Evaluate $\int_{0}^{\infty} e^{-t} \frac{\sin^{2} t}{t} dt$.
 - (c) Evaluate $\int_{0}^{2\pi} \frac{\cos 3\theta}{5 4\cos \theta} d\theta$.
- 6. (a) A string is stretched and fastened to two points distance ℓ apart, motion is started by displacing the string in the form $y = a \sin\left(\frac{\pi x}{\ell}\right)$ from which it is released at time t = 0. Show that the displacement of a point at a distance x from one end at a distance x from one end at time t is given by $y(x,t) = a \sin\left(\frac{\pi x}{\ell}\right) \cos\left(\frac{\pi ct}{\ell}\right)$.
 - (b) If f(z) = u + iv is analytic and $u v = e^x (\cos y \sin y)$ find f(z) in terms of z.
 - (c) Evaluate:

$$L^{-1}\!\!\left[\frac{s}{\left(s-2\right)^6}\right]\,\cdot$$

GN-Con.:6443-14.