Q. P. Code: 25565
(3hours)
[Total marks: 80]
N.B. 1) Question No. 1 is compulsory.
2) Answer any Three from remaining
3) Figures to the right indicate full marks

1. a) Find Laplace transform of $f(t)=\int_{0}^{t} u e^{-3 u} \sin u d u$.
b) Show that the set of functions $\{\cos n x, n=1,2,3 \ldots\}$ is orthogonal on $(0,2 \pi) .5$
c) Does there exist an analytic function whose real part is $u=k(1+\cos \theta)$? Give justification.
d) The equations of lines of regression are $x+6 y=6$ and $3 x+2 y=10$. Find i) means of x and y, ii) coefficient of correlation between x and y.
2. a) Evaluate $\int_{0}^{\infty} e^{-t \frac{\sin ^{2} t}{t}} d t$.
b) Find the image of the triangle bounded by lines $x=0, y=0, x+y=1$ in the z-plane under the transformation $w=e^{i \pi / 4} z$.
c) Obtain Fourier series of $f(x)=x^{2} \quad$ in $(0,2 \pi)$. Hence, deduce that -8

$$
\frac{\pi^{2}}{12}=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}++\cdots
$$

3. a) Find the inverse Laplace transform of $F(s)=\frac{s}{\left(s^{2}+4\right)^{2}}$.
b) Solve $\frac{\partial^{2} u}{\partial x^{2}}-100 \frac{\partial u}{\partial t}=0$, with $u(0, t)=0, u(1, t)=0, u(x, 0)=x(1-x)$
taking $h=0.1$ for three time steps up to $t=1.5$ by Bender - Schmidt method. 6
c) Using Residue theorem, evaluate
i) $\int_{0}^{2 \pi} \frac{d \theta}{5-4 \cos \theta}$
ii) $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}$
Q. P. Code: 25565
4. a) Solve by Crank -Nicholson simplified formula $\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial u}{\partial t}=0$,

$$
u(0, t)=0, u(5, t)=100, u(x, 0)=20 \text { taking } h=1 \text { for one-time step. } 6
$$

b) Obtain the Taylor's and Laurent series which represent the function

$$
\begin{equation*}
f(z)=\frac{z-1}{z^{2}-2 z-3} \text { in the regions, i) }|z|<1 \text { ii) } \quad 1<|z|<3 \tag{6}
\end{equation*}
$$

c) Solve $\left(D^{2}+4 D+8\right) y=1$ with $y(0)=0$ and $y^{\prime}(0)=1$ where $D \equiv \frac{d}{d t} . \quad 8$
5. a) Find an analytic function $f(z)=u+i v$, if

$$
u=e^{-x}\left\{\left(x^{2}-y^{2}\right) \cos y+2 x y \sin y\right\}
$$

b) Find the Laplace transform of

$$
f(t)=\left\{\begin{array}{l}
t, 0<t<1 \tag{6}\\
0,1<t<2
\end{array} \text { and } f(t+2)=f(t) \quad \text { for } t>0\right.
$$

c) Obtain half range Fourier cosine series of $f(x)=x, 0<x<2$. Using

Parseval's identity, deduce that -

$$
\frac{\pi^{4}}{96}=\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\cdots
$$

6. a) If $f(a)=\int_{c} \frac{4 z^{2}+z+4}{z-a} d z$ where C is the ellipse $4 x^{2}+9 y^{2}=36$.

$$
\text { Find, i) } f(4) \quad \text { ii) } f^{\prime}(-1) \quad \text { and } \quad \text { iii) } f^{\prime \prime}(-i)
$$

b) Use least square regression to fit a straight line to the following data,

\mathbf{x}	5	10	15	20	25	30	35	40	45	50
\mathbf{y}	17	24	31	33	37	37	40	40	42	41

c) A string is stretched and fastened to two points distance l apart. Motion is started by displacing the string in form $y=\operatorname{asin}(\pi x / l)$ from which it is released at a time $t=0$. If the vibrations of a string is given by $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$, show that the displacement of a point at a distance x from one end at time t is given by $y(x, t)=a \sin (\pi x / l) \cos (\pi c t / l)$.

