Paper / Subject Code: 33501 / High Performance Computing

ME sem II / comp | choice based | 2nd half 2018 Sub: HPC (Time: 3 Hours) [Total Marks 80]

N. B:

1. Question No. 1 is Compulsory.

2. S	olve any THEFF from O	
3. D	olve any THREE from Question No. 2 to 6. Draw neat well labeled diagram wherever necessary.	
	and the first wherever necessary.	
Q. 1 a)	What are the applications of parallel computing?	
b)	What are the principles of Manney D	(5)
c)	What are the principles of Message Passing Programming.	(5)
d)	Explain Non-Blocking Communication using MPI. Explain the cube Interconnection networks.	(5)
Q. 2 a)	Write a MPI program for prime number generation.	(5)
b)	What is a Data Race? Why Data-Races are Undesired? How Data-Races	(10)
	Can be Prevented?	(10)
Q. 3 a)	Short note on 'SIMD matrix multiplication'.	(10)
b)	Explain SIMD, MIMD and SIMT architecture.	(10)
Q. 4 a)	With neat block diagram explain in detail about the various programmatic	(10)
,	levels of parallel processing.	(10)
b)	State Amdahl's law?	
	Suppose a serial program reads n data from a file performs some	
	computation, and then writes n data back out to another file. The 1/0	
	is illeasured and found to be 4500 + in usec. If the computation nortice to the	(10)
	n 2/200 μsec, what is the maximum speedup we can expect when n=10,000 and p processors are used?	
Q. 5 a)	Explain in balaco	
	Explain in brief Quantum Computers. What are the different Performance metrics.	(10)
b)	what are the different Performance metrics.	(10)
Q. 6	Solve any FOUR:	
	1. Write a short note on data flow model.	
	Explain Granularity, Concurrency and dependency graph.	
	3. Explain Various techniques in decomposition.	(20)
	4. What is meant by grain packing and scheduling in parallel	(20)
	Processing.	
	5. What are the characteristic of tasks and interactions?	