Q. P. Code: 38581

[10]

38581

[Time: 3:00 Hours] [Marks:80]

Please check whether you have got the right question paper.

N.B: 1. Question No.1 is compulsory.

- 2. Attempt any 3 questions from question 2 to 6.
- Figure to the right indicates marks.
- Use of scientific calculator is allowed.
- 5. mixing of sub-questions not allowed

X1,X2,X3>=0

Q.1) a) Five jobs are to be processed at three machines A, B and C in the order ABC. The time taken by each job on the three machines is given below. Each machine can process one job at a time. Determine the optimum sequence for the jobs and total elapse time. Also find the idle time for each machine. [10]

	\$ 10 G		Jobs		
Task	2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	3	4	5
A S		12	11	9	8
B	8	9	5.00	6	5 .7 S
		13	9	10	14

b) A house wife makes sauce and chutney which she sells to the local store each week. She obtains a profit of Rs 4 and Rs 5 for a kg of chutney and sauce respectively. One kg of chutney requires 3 Kg of tomatoes and 4 cups of vinegar and one kg of sauce requires 5 kg of tomatoes and 2 cups of vinegar. She can buy 24 kg tomatoes and 3 bottles of vinegar at discounted price each week. The 3 bottles provide 16 cups of vinegar. In order to make it worthwhile the store insists on buying at least 3 kg of goods each week. What combination should be made in order to maximize profit. Form a Mathematical model and use graphical method to get solution [10]

Q.2 a) Solve the following using Simplex Method
Maximize
$$Z = 12X1 + 3X2 + X3$$

Subject to
 $10X1 + 2X2 + X3 < = 100$
 $7X1 + 3X2 + 2X3 < = 77$
 $2X1 + 4X2 + X3 < = 80$

b) Find an initial basic feasible solution to the following transportation problem by VAM Method [10]

Plant		Supply			
	2,000	3	11	7	6
	012000	0	6	1	1
	125 6 F 6 1 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8	15	9	10
Requirement		5	3	2	

Page **1** of **3**

Q. P. Code: 38581

[10]

[10]

Q.3) a) Solve the following assignment problem and find the optimum assignment that will result in the minimum man hours needed.

				Jobs	2000	
		A	В	C	\mathbf{D}	E C
	P	10	12	15	\$ 12	8.6
	Q	7	16	14	14	
Workers	R	13	14	175° 50	9	9
	S	12	10	6 410%	13	10
	T	8	13	150	odlo.	15

b) Find the optimal strategies and value of the game for the following problem:

	600			2, 4, 6, 6, 4, 4, 4, 4, 7, 4, 7, 7, 8, 7, 8, 7, 8, 7,
20,		Player l	B	C. C
500			53.50.00	
A				
0	500	S. 3. 4.	36,0,0	
3	10 10 A	1200	3	

Q.4) a) The data collected in running a machine, the cost of which is Rs 60,000 are given

Player A

Year	410000		3000	4 5 6	5
Resale Value	42000	30000	20400	14400	9650
(Rs.)				o' Fo	
Cost of spare	4000	4270	4880	5700	6800
(Rs.)					
Cost of	14000	16000	18000	21000	25000
Labour		100 E			

Determine the optimum of replacement of the Machine?

b) The following are set of activities and different time estimates for a project in days

	10 10 10 10 10 10 10 10 10 10 10 10 10 1	,O1 042 / 1				
Activity	1-2 1-3	1-4	2-5	3-5	4-6	5-6
Optimistic(to)		2 2	1	2	2	3
Most likely TM		2	1	5	5	6
Pessimistic(tp)		8	1	14	8	15

- i) Draw the network.
- ii) Determine the expected duration and variance of each activity.
- iii) Find the expected project length.
- iv) Calculate the variance and standard deviation of project length. If the project due date is 18 weeks, what is the probability of not meeting the due date [P(z=0.33)=0.623] [10]

Page 2 of 3

Q. P. Code: 38581

[10]

[10]

Q.5)a) A salesman has to visit five cities A, B., C, D, E. The distance between 5 cities are as below. If the salesman starts from city A and has to come back to city A which route will he select so that the total time to visit all cities will be minimum?

	TO CITY							
From		A	В	C	D	E		
	A	0	7	600	8	4		
city	В	7	0	\$ 8 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2005 2005 2005 2005	6		
	С	6			9	7		
	D	8 5 5	5.5					
	E	64AAAA	6	7 2 2	8			

b) Solve the following problem using Dual Simplex method:

Minimize
$$Z = 2x1 + 2x2 + 4x3$$

Subject to $2x1 + 3x2 + 5x3 \ge 2$
 $3x1 + x2 + 7x3 \le 3$
 $x1 + 4x2 + 6x3 \le 5$
 $x1,x2,x3 \ge 0$

Q.6) a) Solve the following LPP by Big-M method: Maximize Z = 3x1 - x2

Subject to
$$2x1 + x2 \le 2$$

 $x1 + 3x2 \ge 3$
 $x2 \le 4$
 $x1,x2 \ge 0$

b) Consider the data shown below for a project

Draw the network diagram and determine the project duration and the critical path i)

Determine total float, free float and independent float for each activity ii)

Activity	1-2	1-3	1-4	2-5	3-5	4-6	5-6
Duration(weeks)	2000	4	3	1	6	5	7
	0,000						