F.Y.B.Sc. Comp. Sci. Sem II April 2018 Calculus

Q.P. Code :05602

[Marks:75] [Time: $2^{1/2}$ Hours] Please check whether you have got the right question paper. All questions are compulsory. N.B: Figures to the right indicate marks. 15 05 Answer following questions. Let f be a function that is continuous on [a,b] and differentiable on [a,b]. If $f''(x)=0 \forall x \in$ Q.1 Choose the best choice for the following questions: i) (a,b), then f is on [a,b]. p) increasing q) decreasing r) constant ii) If a function f is concave down on (a, b), which of the following is true on (a, b). p) f' > 0q) f' < 0r) f' = 0iii) If f and g are integrable functions on [a,b] and $f(x) \ge g(x)$ for all $x \in [a,b]$, then $p) \int_a^b f(x) \ge \int_a^b g(x)$ q) $\int_a^b f(x) \le \int_a^b g(x)$ r) Either (p) or (q) iv) A rule that assigns a unique real number f(x, y, z) to each point (x, y, z) in some set D in the xyzis called surface p) a function of one variable q) a function of two variables r) a function of three variables s) None of these. v) which of the following is true about the function $f(x,y) = \frac{x^3y^2}{1-xy}$? p) continuous everywhere q) Continuous except where 1 - xy = 0r) Either (p) or (q) s) Neither (p) nor (q)

05

05

15

15

- b) Fill in the blanks for the following question:
 - i) A function f has a relative minimum at x_0 if there is an open interval containing x_0 on which f(x) is $f(x_0)$ for every x in the interval.
 - ii) If f''(a) exists and f has an inflection point at x = a, then f''(a) is

 - iv) A solution of a differential equation $\frac{dy}{dx} y = e^{2x}$ is given by
- c) State true of false for the following questions:
 - i) If a function f is continuous on [a, b], then f has an absolute maximum on [a, b].
 - ii) Newtons Method is a process to find exact solutions to f(x) = 0.
 - iii) The equation $\left(\frac{dy}{dx}\right)^2 = \frac{dy}{dx} + 2y$ is an example of a second order differential equation.
 - iv) If g(x) is continuous at x_0 and h(y) is continuous at y_0 , then f(x,y) = g(x)h(y) is continuous at (x_0, y_0)
 - A function f of two variables is said to have a relative minimum at a point (x_0, y_0) if there is a disk centered at (x_0, y_0) such that $f(x_0, y_0) \ge f(x, y)$ for all points (x, y) that lie inside the disk.
- Q.2 Answer any THREE of the following questions:
 - a) Find the intervals on which $f(x) = x^3$ is increasing and the intervals on which it is decreasing.
 - b) Find the relative extrema of $f(x) = 3x^5 5x^3$.
 - . c) Locate the critical points of $f(x) = 4x^4 16x^2 + 17$.
 - . d) Find the absolute maximum and minimum values of $f(x) = 8x x^2$ in [0,6].
 - e) A liquid form of antibiotic manufactured by a pharmaceutical firm is sold in bulk at a price of Rs 200 per unit. If the total production cost (in Rs) for x units is $C(x) = 500,000 + 80x + 0.003x^2$ and if the production capacity of the firm is at most 30,000 units in a specified time, how many units of antibiotic must be manufactured and sold in that time to maximize the profit?
 - f) The equation $x^3 + x 1 = 0$ has one real solution. Approximate it by Newtons Method.
- Q.3 Answer any THREE of the following questions:
 - a) Find the area under the curve $y = x^4$ over the interval [-1,1].
 - b) Find the area of the region that is enclosed between the curves $y = x^2$ and y = x + 6.
 - c) Find the approximate value of $\int_{1}^{2} \frac{1}{x^{2}} dx$ using Simpson's rule with n=10.
 - d) Solve differential equation $\frac{dy}{dx} = -xy$
 - e) Use Euler's Method with a step size of 0.2 to find approximate solution of the initial-value problem $\frac{dy}{dx} = y x$, y(x) = 2 over $0 \le x \le 1$.
 - f) Solve the differential equation $\frac{dy}{dx} + y = \frac{1}{1+e^x}$ by the method of integrating factors.

(Turn Over)

15

15

- Q.4 Answer any THREE of the following questions:
 - a) Let $f(x,y) = -\frac{xy}{x^2+y^2}$. Find limit of $f(x,y)as(x,y) \to (0,0)$ i) Along y-axis and ii) along the line y = -x.
 - b) Evaluate $\lim_{(x,y)\to(0,0)} y \cdot \log(x^2 + y^2)$, by converting to polar coordinates.
 - , c) Find $f_x(1,3)$ and $f_y(1,3)$ for the function $f(x,y) = 2x^3y^2 + 2y + 4x$.
 - -d) Find the directional derivative of $f(x, y, z) = x^2y yz^3 + z$ at the point (1, 2, 0) in the direction of the vector a = 2i + j 2k.
 - e) Find an equation of the tangent plane to the surface $z = x^2y$ at the point (2, 1, 4). Also find the parametric equation of the line that is normal to the surface at the point (2, 1, 4).
 - f) Find all relative extrema and saddle points of $f(x, y) = 4xy x^4 y^4$
- Q.5 Answer any THREE of the following questions:
 - a) Let $f(x) = ax^2 + bx + c$, where a > 0. Prove that $f(x) \ge 0$ for all x if and only if $b^2 4ac \le 0$.
 - b) Show that $y = xe^{-x}$ satisfies the equation xy' = (1 x)y.
 - c) Find the area of the region under the curve $y = x x^2 + 1$ and above the x-axis.
 - d) Solve differential equation $x \frac{dy}{dx} y = x$.
 - e) Determine whether the following limit exists. If so, find its value. $\lim_{(x,y)\to(0.0)} \frac{x^4-y^4}{x^2+y^2}$.