Total Marks: 80

Hours: 3 hrs

Note: 1. Question no. 1 is compulsory.

- 2. Attempt any three questions out of remaining five questions.
- **Q.1.** [a] Evaluate $\int_0^\infty 5^{-4x^2} dx$.
 - **[b]** Solve $\frac{dy}{dx} = xy$ with the help of Euler's method, given that y(0) = 1, and find y when x = 0.3 (h = 0.1).
 - [c] Evaluate $\frac{d^4y}{dx^4} + 2\frac{d^2y}{dx^2} + y = 0.$ [3]
 - [d] Evaluate $\int_0^1 \sqrt{\sqrt{x} x} \, dx$. [3]
 - [e] Solve $(1 + \log xy) dx + (1 + \frac{x}{y}) dy = 0.$ [4]
 - [f] Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1+x^2}} \frac{dxdy}{1+x^2+y^2}$. [4]
- **Q.2.[a]** Solve $xy(1 + xy^2)\frac{dy}{dx} = 1$. [6]
 - [b] Find the area inside the circle $r = a \sin\theta$ and outside the cardioide $r = a (1 + \cos\theta)$.
 - [c] Apply Runge-kutta Method of fourth order to find an approximate value of y when x = 0.2 given that $\frac{dy}{dx} = x + y$ when y = 1 at x = 0 with step size h = 0.2.
- Q.3.[a] Show that the length of the curve $9ay^2 = x(x-3a)^2$ is $4\sqrt{3}a$. [6]
 - **[b]** Change the order of the integration of $\int_0^1 \int_{-\sqrt{2y-y^2}}^{1+\sqrt{1-y^2}} f(x,y) dx dy$. [6]
 - [c] Find the volume of the paraboloid $x^2 + y^2 = 4z$ cut off by the [8] plane z = 4.
- **Q.4.** [a] Show that $\int_{0}^{1} \frac{x^{a}-1}{\log x} dx = \log(a+1)$. [6]
 - **[b]** If y satisfies the equation $\frac{dy}{dx} = x^2y 1$ with $x_0 = 0$, $y_0 = 1$, using Taylor's Series Method find y at x=0.1 (take h=0.1). [6]
 - [c] Find the value of the integral $\int_0^1 \frac{x^2}{1+x^3} dx$ using (i) Trapezoidal rule [8] (ii) Simpson's $1/3^{rd}$ rule (iii) Simpson's $3/8^{th}$ rule.

Q.5.[a] Solve
$$(y - xy^2)dx - (x + x^2y)dy = 0.$$
 [6]

[b] Evaluate
$$\iiint \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2}} dx dy dz$$
 over the ellipsoid [6]
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

[c] Evaluate
$$(2x + 1)^2 \frac{d^2y}{dx^2} - 2(2x + 1) \frac{dy}{dx} - 12y = 6x$$
. [8]

- Q.6. [a] A resistance of 100 ohms and inductance of 0.5 henries are connected in series with a battery of 20 volts. Find the current at any instant if the relation between L, R, E is $L \frac{di}{dt} + Ri = E$. [6]
 - **[b]** Solve by variation parameter method $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{e^x}$. [6]
 - [c] Evaluate $\iint xy (x 1) dx dy$ over the region bounded by xy = 4, [8] y = 0, x = 1 and x = 4.

.