FEISEM. I (Rew) A.M. I 4/12/12

P4 411-1 cam - Oct -12 -156

Con. 8962-12.

(REVISED COURSE)

KR-3357

(3 Hours)

|Total Marks : 80

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Attempt any three questions from the remaining five.
 - (3) Figures to the right indicate full marks.

1. (a) Prove that
$$\frac{1}{1 - \frac{1}{1 - \frac$$

(b) If
$$u = \log [\tan x + \tan y]$$
, prove that,

$$\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} = 2$$

(c) If
$$u = \frac{x+y}{1-xy}$$
, $v = \tan^{-1} x + \tan^{-1} y$, find $\frac{\partial(u,v)}{\partial(x,y)}$

(d) Show that
$$\log[1+\sin x] = x - \frac{x^2}{2} + \frac{x^3}{6} + \dots$$

(c) Show that every square matrix can be uniquely expressed as P + iQ, where P and Q are Hermitian matrices.

(f) Find nth order derivative of
$$\frac{x^2+4}{(x-1)^2(2x+3)}$$

2. (a) Show that the roots of the equation
$$(x + 1)^6 + (x - 1)^6 = 0$$
 are given by
$$-i\cot\left[\frac{(2k+1)\pi}{12}\right], k = 0, 1, 2, 3, 4, 5.$$

(c) State and prove the Euler's theorem for a homogeneous function in two variables.

Hence find the value of
$$x \cdot \frac{\partial u}{\partial x} + y \cdot \frac{\partial u}{\partial y}$$
 if $u = \frac{\sqrt{xy}}{\sqrt{x} + \sqrt{y}}$.

TURN OVER

3. (a) Test for consistency and solve if consistent -

$$x_1 - 2x_2 + x_3 - x_4 = 2$$
; $x_1 + 2x_2 + 2x_4 = 1$; $4x_2 - x_3 + 3x_4 = -1$

- (b) Find all the stationary values of $x^3 + 3xy 15x^2 15y^2 + 72x$.
- (c) If $\tan\left(\frac{\pi}{4} + iv\right) = re^{i\theta}$, show that

6

6

8

- (i) r = 1 (ii) $\tan \theta = \sinh 2v$ (iii) $\tan hv = \tan \frac{\theta}{2}$.
- 4. (a) If $x = u + e^{-v} \sin u$, $y = v + e^{-u} \cos u$ find $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$ by using Jacobian.
 - (b) Considering only the principal value, if $(1 + i \tan \alpha)^{1+i \tan \beta}$ is real, prove that its value 6 is $(\sec \alpha)^{\sec^2 \beta}$.
 - (c) Solve the system of linear equation by Crout's method x y + 2z = 2; 3x + 2y 3z = 2; 4x 4y + 2z = 2.
- 5. (a) Expand $\cos^7\theta$ in a series of cosines of multiples of θ .
 - (b) Evaluate $\lim_{x\to 0} \left[\frac{1}{x^2} \cot^2 x \right]$
 - (c) If $y = (\sin^{-1} x)^2$, obtain $y_n(0)$.
- 6. (a) Show that the vectors are linearly dependent and find the relation between them: $X_1 = [1, 2, -1, 0], X_2 = [1, 3, 1, 2], X_3 = [4, 2, 1, 0], X_4 = [6, 1, 0, 1]$
 - (b) If $\frac{x^2}{1+u} + \frac{y^2}{2+u} + \frac{z^2}{3+u} = 1$,

Prove that,

$$\left(\frac{\partial u}{\partial x}\right)^{2} + \left(\frac{\partial u}{\partial y}\right)^{2} + \left(\frac{\partial u}{\partial z}\right)^{2} = 2\left[x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z}\right]$$

(c) Fit a second degree parabolic curve to the following data :-

x	1	2	3	4	5	6	7	8	9
у	2	6	7	8	10	11	11	10	9