QP Code: 735200

(3 H	ours)	[To	tal Marks: 80
------	-------	------	---------------

N.I	3.:	1) Solve Q 1 and any Three from Q 2 to Q 6		
		2) T-S charts of gases are permitted.		
		3) Assume suitable data if necessary and mention it clearly.		
1. Solv		re any four		
	(A)	Explain the applications of cryogenics.	5	
	(B)	When one end of tube is dipped in cryogen, it gets pumped through the tube.	5	
		State the reason.		
	(C)	Compare J-T valve and expanders used in gas liquefaction systems.	5	
	(D)	Show the configurations of heat exchangers used in cryogenic systems.	5	
	(E)	What is super fluid? explain.	5	
2.	(A)	Derive an expression for the work requirement for thermodynamically ideal	10	
		liquefaction system.		
	(B)	Determine the ideal-work requirement for the liquefaction of oxygen,	10	
		beginning at 101.3 kPa (l·atm) and 300 K. Why it is not practicable?		
•	(1)		10	
3. (A)		Determine the liquid yield, the work per unit mass compressed and work per	10	
		unit mass liquefied for the pre cooled Linde-Hampson system using nitrogen		
		as the working fluid. The nitrogen portion of the system operates between 1		
		atm, 300 K and 200 atm. The state points for the refrigerant portion of the		
		system are as follows: $h_a = 207.94 \text{ kJ/kg}$; $h_b = 250.2 \text{ KJ/kg}$ and $h_c = 61.23 \text{ kJ/kg}$ at 300 K; $h_d = 61.23 \text{ kJ/kg}$ at 243 K.		
		The refrigerant flow rate ratio is 0.1. Find the FOM if ideal work required is		
		767 kJ/kg liquefaction.		
	(B)	Why hydrogen, helium and neon gases cannot be liquefied by simple Linde-	10	
		Hampson liquefaction system? Explain with T-S and schematic sketches of	10	
1		simple Linde - Hampson system.		

4. (A) Draw schematic of Dewar vessel and show its elements.

10

20

(B) Draw a reversible isobaric-source refrigeration cycle on Temperature-Entropy co-ordinates and derive the expression

$$COP = \frac{h_2 - h_1}{[T_0 (s_2 - s_1)] - (h_2 - h_1)} = \frac{\begin{pmatrix} T_2 \\ T_1 \end{pmatrix} - 1}{\begin{pmatrix} T_0 \\ T_1 \end{pmatrix} In \begin{pmatrix} T_2 \\ T_1 \end{pmatrix} - \begin{pmatrix} T_2 \\ T_1 \end{pmatrix} + 1}$$

where T_1 and T_2 are the minimum and maximum isobaric source temperatures and T_0 is the isothermal sink temperature.

- 5. (A) Determine the ideal-work requirements for the separation of a mixture of gases consisting of 79% nitrogen and 21% oxygen by weight at 300 K and 101.3 kPa. Consider the gases as ideal gases.
 - (B) Explain the methods of liquid level measurements in cryogens storage vessels. 10
- 6. Write short notes on any three -
 - (A) Insulations used in Cryogenics
 - (B) Cryogenic liquids help to separate rubber from vehicle old tyres
 - (C) Blood storage using cryogens
 - (D) Ortho-para-hydrogen conversion