Duration: 3 Hours

Max. Marks 80

N.B.

- 1. Q.1 is compulsory. Attempt any three from the remaining questions.
- 2. All questions carry equal marks.
- Figures to the Right indicate full marks.
- 3. Assume suitable data if necessary

Q.1 Attempt any four

20

a. Determine steady state error for unit step, ramp and acceleration inputs for the following system.

$$\frac{0.049545(z+2.972)(z+0.2045)}{(z-1)^2(z-0.3679)}$$

- b. What do you mean by discretization? List various methods of discretization and explain any one.
- Check controllability and observability of the given system.

$$z(k+1) = \begin{bmatrix} 0 & 1 \\ 0.05 & -0.4 \end{bmatrix} z(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} 1 & 1.5 \end{bmatrix} z(k)$$

- d. Explain block diagram of digital control system by giving appropriate example.
- e. What is meant by internal stability? How it is different from BIBO stability?
- f. Map the region from s-plane to the z-plane which is bounded by constant frequency lines at $\pm 5j$ and constant damping ratio lines at $\pm 60^{\circ}$.
- Q.2 A. Determine the values of K for asymptotic stability of the system given by characteristic equation using Jury's stability criteria

$$P(z) = z^4 + 0.2z^3 - 0.25z^2 - 0.05z + K = 0$$

B. Explain discrete-time PID controller in detail.

10

Q.3 A. Design the state feedback control law for the open loop system having all the poles at 0.5.

$$x(k+1) = \begin{bmatrix} 3 & 1 & 0 \\ -3 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} x(k) + \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x(k)$$

B. What is multirate sampling? Explain multirate output feedback based state estimator.

Q.4 A. Obtain state transition matrix for the system defined by

10

$$z(k+1) = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & -2 \\ 1 & 0 & -3 \end{bmatrix} z(k)$$

B. Explain sampler as an impulse modulator.

10

Q.5 A The discrete time control system is given by

10

$$x(k+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & -2 & -1 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(k)$$
 (2) Cmaking?

Design a dead beat observer.

B. Discretize the given system

10

$$G(s) = \frac{s+3}{s^2 + 3s + 2}$$

with sampling period of Ts=0.2 sec.

Q.6 A. Represent the given system in controllable and diagonal canonical form along with 10 its block diagram realization.

$$T(z) = \frac{z^3 + 8z^2 + 17z + 8}{(z+1)(z^2 + 5z + 6)}$$

B. The block diagram of the system is shown in Figure 1, using signal flow graph 10 determine transfer function of the system

Figure 1: