(3 Hours)

(Total Marks: 80)

Please check whether you have got the right question paper.

- **N.B.:** 1) Question no. 1 is compulsory.
 - 2) Solve any three questions from remaining five questions.
 - 3) Assume suitable data if any required.

1. Solve any four

(20)

- a) Distinguish between global, local and dynamic thresholding
- **b)** Explain run length decoding
- c) What are the differences between lossy and lossless compression
- **d)** Explain slint transform
- e) Explain Median filter
- 2. a) Explain the fundamental steps in Image processing

(10)

b) Perform Histogram Equalization on gray level distribution shown in the table. What happen if the Histogram equalization is equalized twice

Gray level	0	1 _	2	30	4.9	5	6	7.7°
No. of pixel	513	1300	950	350	100	435	100	148

3. a) Explain following terms with example

(10)

- i) Image Negative
- ii) Gray level slicing
- iii) Bit plane slicing
- iv) Log transformation
- b) Generate Huffman code for a given Image source. Calculate entropy of the same and average length of the code generated. Also calculate compression ratio achieved compared to standard binary encoding.

Level	0	A S	2.00	5 3	40	5	6	7
Probability	0.1	0.09	0.02	0.01	0.5	0.2	0.03	0.05

4. a) Explain the Morphological operation.

(10)

- i) Opening
- ii) Closing
- iii) Thinning
- iv) Thickening
- b) What is Hadamurd Transform calculate the Hadamard transform of the following (10) Image.

7	2.00	315	3	1
9	4	200	2	2
\ `?	10	3	2	3
	4	2	2	1

(10) Explain the terms with diagram 5. Neighbours of pixel Connectivity (ii) (iii) Adjacency (iv) Path Explain the properties of 2-D DFT (10)Write a short notes on (20)1. Euclidian Distance, D4, D8, DM Distance 2. Hit and Miss transform **3.** Homomarphic filtering **4.** Hough Transform for line detection

69668 Page 2 of 2