BEFELX | sem-VIII | CBG8 / SUB- CMOS-VISI / 25/11/2016

Q.P. Code: 719703

(3 Hours)

Total Marks: 80

- 2) Solve any THREE out of remaining questions
- 3) Draw neat and clean diagrams
- 4) Assume suitable data if required.

1.	A.	Establish the appropriate relationship between g _m and R _{on} for MOSFET.	5
	B.	Draw and explain LC oscillator.	5

- C. Explain the necessity of Millers theorem with suitable example.
- D. Explain System on chip and System in package.
- A. What is bandgap reference? In short describe various methods of 10 implementation of bandgap references.
 - B. Draw and explain common gate circuit.
 - C. Sketch lx and the transconductance of the transistor as a function of Vx for each circuit in the given figure as Vx varies from 0 to VDD. For part (a) assume Vx varies from 0 to 1.5V.

- 3. A. Write qualitative analysis of input-output characteristics of a differential pair. 10
 Also mention about common mode characteristics for the same.
 - B. Write in detail about speed considerations of a switch capacitor circuit. 10

4. A. In the following Figure, sketch V_x and V_y as a function of I_{REF}: If I_{REF} requires O.5V to operate as a current source, what is its maximum value? Assume: for all transistors

(W/L)=25/0.5, $\mu_n C_{ox} = 50 \mu A/V^2$, $V_{TH} = 0.6 V$, $\lambda = \gamma = 0$ and $V_{DD} = 3 V$.

- B. Explain the following for op-amp

 I. CMRR
 II. Input Range Limitation

 C. Explain the white noise and flicker noise in case of MOSFET. Explain which 5 noise is dominant when?
- 5. A. Discuss stability issues and frequency compensation of two stage operational amplifier.
 B. Explain Non-ideal effects in PLL.
- 6. A. Compare the performance of various op-amp topologies.
 - B. Draw and explain charge pump circuit.

 C. Explain poninverting switched capacitor amplifier circuit.
 - C. Explain noninverting switched capacitor amplifier circuit.
 - D. Draw and explain AMS design flow.