Paper / Subject Code: 42505 / Elective I :- 1) Digital Image Processing

Wednesday, May 29, 2019 10:30 am - 01:30 pm 1T01117 - B.E.(ELECTRONICS)(Sem VII) (CBSGS) / 42505 - Elective I :- 1)Digital Image Processing 68456

(3 hours) Marks: 80

Note: 1) Question No. 1 is compulsory.

- 2) Out of remaining questions, attempt any 3 questions.
- 3) In all 4 questions to be attempted.
- 4) All questions carry equal marks.
- 5) Figures in brackets on the right hand side indicate full marks.
- 6) Assume Suitable data if necessary
- Q.1 Answer any Four of the following.
 - a. Chain codes can be made invariant to rotation. Justify.

[5]

b. Briefly explain fundamental steps in image processing.

[5]

c. Briefly explain image enhancement in frequency domain.

- [5]
- d. List different types of data redundancies present in Digital Image. Explain them.

[5] [5]

- e. The principal function of median filter is to force points with distinct intensities to be more like neighbours. State TRUE or FALSE and Justify.
- Q.2. a. Given below 5×5 image. Operate on the central 3×3 pixels by low pass and high pass masks and obtain 3×3 images as output. [10]

6	5.0	12	12	3
14	12	13	10	9
10	15	40	10	6
8	3	78	40	7
8	3	10	8	5

Using these outputs verify

Original Image=Low Pass Output + High Pass Output

In case of discrepancy explain the reason.

- b. Explain any three point processing techniques with the help of transformation [10] graphs.
- Q.3. a. Perform histogram equalization and plot the histogram before and after [10] equalization.

0,2	6	4	3	0	7
9	2	7	5	3	0
7	4	2	7	0	7
r へ り	1	5	4	0	6
	4	7	5	4	1

b. A source emits four symbols (a,b,c,d) with the probabilities 0.4, 0.2, 0.1, and 0.3 respectively. Construct arithmetic coding to encode and decode the word "cab".

68456

- How edges are detected in digital image using gradient and Laplace operators. [10]Q.4.
 - b. Explain following methods of image segmentation by giving appropriate [10] illustrations: (i) region growing (ii) Splitting and merging.
- Q.5. a. For a 2x2 transform A and the image U, Compute the transformed image V, and [10] the basis image. Also reconstruct the original image U from the transformed image **V**.

$$A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad \text{and} \qquad U = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Apply Fast Hadamard algorithm to the rows and columns of the 2-D image [10] segment shown below. Show the butterfly diagrams.

0	10	2	1
10	2	3	2
2	3	4	3
16	2	3	2

- Q.6. Write short notes on (any Four)
 - Homomorphic Filtering. a.
 - [5] Opening and Closing. [5] b.
 - Colour Models. c.
 - [5] Region Filling [5] d.
 - Image Compression Models.

