B.E. Electrical VII CBSGS

(3 Hours)

[Total Marks: 80

N.B.: (1) Question no.1 is compulsory.

- (2) Solve any three out of remaining.
- (3) Assume the suitable data in required and mention the same.

1. Answer the following:-

20

- a. What is the significance of Carters Coefficient?
- b. What are the design modifications in stator of energy efficient more as compared to standard motor.
- c. Why the various mechanical forces are developed in the winding of transformer.
- d. Discuss the significance of various "Electrical Properties" of transformer oil.
- 2. a. Discuss the various factors affecting the choice of flux density and current 10 density in transformer design.
- b. Calculate the overall dimensions of a 200 KVA, 6600/440V, 50 Hz, 3 phase core type transformer with data, emf per turn = 10V, maximum flux density= 1.3 Wb/m², current density = 2.5 A/mm², window space factor = 0.3, overall height = overall width, stacking factor = 0.9. Use three step core.
- 3. a. A 15000 KVA; 50 HZ; 33/6.6 KV; 3 phase star delta; core type of transformer has following data net iron area of each limb = 1.5* 10⁻³ m²; neat area of yoke = 1.8* 10-3 m²; mean length of flux path in each limb = 2.3m; mean length of flux path in each yoke = 1.6m; no of turns in HV = 450. calculate the no load current. Use the data provided. Dencity of iron=7.8×10³Kg/m³.

BmWb/m2	0.9	1.0	1.2	1.3	1.4
MmfNm	130	210	420	660	1300
Iron Loss	0.8	1.3	1.9	2.4	2.9
W/Kg			1 000	1	(12-2-31)

- 3. b. Derive the output equation for a three phase transformer and specify the 10 various terms used.
- 4. a. What are the different circuits and parts of electrical machines. Discuss the 10 various limitations on the design of these circuits.

[TURN OVER]

Q.P. Code: 794801

B.E Electrical VII CBSGS

- b. Discuss the designing of end rings in three phase squirrel cage induction 10 machine. How it affects the slip of machine.
- a. What is frame and frame size in case of induction motor. Draw a figure 10 showing structural dimensions of standard frame.
- b. Discuss the No Load Current calculation procedure in three phase induction 10 motor design.
- a. Derive the output equation for a three phase induction motor and specify the 10 various terms used.
- b. Determine the main dimensions, turns per phase, no of slots, conductor 10 cross section, and area of a slot, for a 250 HP, 400V, 3 phase, 4 pole, 50Hz, 1410rpm, delta connected squirrel cage induction motor with the data, average flux density in air gap = 0.5 Wb/m², ampere conductor per meter=30,000A/ m, efficiency = 0.9, power factor = 0.9, winding factor = 0.955, current density = 3.5A/mm², slot space factor = 0.4, ratio of length of core to pole pitch = 1.2, assume 5 slots per pole per phase.