

B.E. Electrical MCBsGs Elect. MIC Design.

(3 Hours)

| Total Marks: 80

N.B.: (1) Question no.1 is compulsory.

- (2) Solve any three out of remaining.
- (3) Assume the suitable data in required and mention the same

1. Answer the following:-

20

- a. What is the significance of Carters Coefficient?
- b. What are the design modifications in stator of energy efficient more as compared to standard motor.
- c. What is the significance of B₆₀ in induction machine design?
- d. Discuss the significance of "Physical Properties" of transformer oil.
- a. What are the different classifications of types of insulation in transformer? 10
 Discuss the various factors to be considered while designing the insulation
 of transformer.
- 2. b. Discuss the designing of core of a three phase transformer.

10

3. a. A 15000 KVA; 50 HZ; 33/6.6 KV; 3 phase star delta; core type of transformer has following data net iron area of each limb = 1.5*10⁻³ m²; neat area of yoke = 1.8*10⁻³ m²; mean length of flux path in each limb = 2.3 m; mean length of flux path in each yoke =1.6 m; no of turns in HV = 450. calculate the no load current. Use the data provided. Dencity of limb=7.8×10³Kg/m³.

Bm Wb/m2	0.9	1.0	1,2	1.3	1.4
MmfA/m	130	210	420	660	1300
Iron Loss	0.8	1.3	1.9	2.4	2.9
W/Kg	1		47083-556	340300	

- b. Derive the output equation for a three phase transformer and specify the 10 various terms used.
- 4. a. What are the different circuits and parts of electrical machines. Discuss the 10 various limitations on the design of these circuits.
- 4. b. Discuss the designing of end rings in three phase squirrel cage induction 10 machine. How it affects the slip of machine.
- a. What is frame and frame size in case of induction motor. Draw a figure 10 showing structural dimensions of standard frame.

- 5. b. Discuss the designing of stator winding for three phase induction motor.
- 6. a. Derive the output equation for a three phase induction motor and specify the 10 various terms used.
- 6. b. Determine the main dimensions, turns per phase, no of slots, conductor 10 cross section, and area of a slot, for a 250 HP, 400V, 3 phase, 4 pole, 50Hz, 1410 rpm, delta connected squirrel cage induction motor with the data, average flux density in air gap=0.5 Wb/m², ampere conductor per meter=30,000A/m, etficiency = 0.9, power factor = 0.9, winding factor = 0.955, curn nt density= 3.5A/mm², slot space factor = 0.4, ratio of length of core to pole pitch = 1.2, assume 5 slots per pole per phase.