B.E. Electrical VII CBGS EMD

Q.P. Code: **5936**

		(3 Hours) [Total Marks	: 80
N	V.B.	: (1) Question No. 1 is compulsory.	~
1130		(2) Attempt any three questions out of remaining five questions.	
		(3) Assume suitable data if necessary and justify the same.	
1.	(a)	i de la	5
	(b)	I Stant distribution	5
	(0)		5
	(d)	Explain the factors affecting size of induction motor.	5
2.		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10
	(b)	Determine the dimensions of the core and yoke for a 100 KVA, 50Hz, single phase, core	10
		type transformer. A square core is used with distance between the adjacent limbs equal to	
		1.6 times the width of the laminations. Assume voltage per turn of 14 volts, maximum	
		flux density 1.1 wb/m ² , window space factor = 0.32 and current density 3A/mm ² , Stacking	
		factor= 0.9, flux density in yoke is to be 80% of flux density in core.	
3.	(a)	Explain the need of EEM and discuss the modification in terms of stator, rotor and air	10
	Chi	gap.	
	(0)	List the different parts of magnetic circuit of a three phase induction motor and	10
		estimate the magnetizing current in terms of components mmf.	
4.	(a)	Explain different methods of cooling transformer with neat sketches.	10
	(b)	A single phase, 400 V, 50 Hz, transformer is built from stamping having a relative	10
		permeability of 1000. The length of flux path is 2.5 m, the area cross section of core is	
		2.5 x 10-3 m ² and the primary winding has 800 turns. Calculate no load current of	
		transformer. The iron loss at working flux density is 2.6 w/kg. Iron density is 7.8 x 103	
		kg/m², stacking factor= 0.9.	
5.	(a)	Explain dispersion coefficient and its effect on maximum power factor and overload	10
		capacity of induction motor.	10,00
	(b)	Discuss the various assumptions in leakage reactance calculation of a core type	10
	-	transformer with LV and HV winding.	
5.0	(a)	Derive an output equation of three phase induction motor in terms of main dimensions.	10
4	(b)	In the design of 30 HP, 3 Phase, 440V, 960 rpm, 50 Hz, delta connected induction	10
		motor, assume the specific electric loading of 25000 ac/m, Specific magnetic loading	10
1	0	of 0.46 wb/m2. Full load efficiency 86%, power factor 0.87. Take ratio of core	
		length to pole pitch as 1, estimate the following:-	
		(i) Stator core dimensions	
		(ii) Flux per pole	
		(iii) Stator Turns per phase	
		(iv) Total number of stator slots.	