BE/Sem VIII/comp/cBGS/DEC2016/ Soft Computing 15-12-2016

Q.P. Code: 790702

	(3 Hours) [Total Marks:	80
N.B. : (1)) Question No.1 is compulsory.	* 01
(2)	Solve any three out of five remaining questions.	5
1. (a) D	efine Support, Core, Crossover points, Normality and Convex Fuzzy sets.	5
(b) W	What are the types of neural processing?	5
2800380	tate differences between derivative based and derivative free optimization echniques?	5
(d) W	What are the features of hybrid system? Why is it required?	5
inpu	ign a fuzzy controller for a train approaching or leaving a station. The ats are the distance from the station and speed of the train. The output he amount of brake power used. Use four descriptors each for inputs and	20
outp action that	out and design using mamdani fuzzy model. Derive set of rules for control on and defuzzification. The design should be supported by figures. Prove if the train is at a short distance with great speed the brake power required	
wou	ald be very high and vice versa.	
st X	our steps of Hebbian learning of a single neuron network is implemented tarting with $w^1 = \begin{bmatrix} 1 & -1 \end{bmatrix}$ at the rate = 1, using the inputs given below: $X_1 = \begin{bmatrix} 1 & -2 \end{bmatrix}$ $X_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}$ $X_1 = \begin{bmatrix} 2 & 3 \end{bmatrix}$ $X_1 = \begin{bmatrix} 1 & -1 \end{bmatrix}$	10
	ind final weights for binary continuous activation function.	
(b) E:	xplain Error Back Propagation training algorithm with flow chart.	10
	low is LVQ working as a classifier? With a neat flow explain the working f LVQ?	10
	What are the steps in Genetic Algorithm? Explain examples the uniform rossover, tournament selection and mutation.	10
	What are the types of Fuzzy Inference Systems? Explain each with ppropriate diagrams.	10
(b) E	explain ANFIS architecture with a neat diagram.	10

Q.P. Code: 790702

2

- 6. Write short notes on any four:
 - (a) Fuzzy extension principle
 - (b) Flowchart of Single Discrete Perceptron Algorithm (SDPTA)
 - (c) Kohonen Learning Algorithm
 - (d) Newton's Method in derivative based optimization
 - (e) CANFIS

Corup, (Coft compir)

Course: B.E. (Sem VII) ALL BRANCH

QP Code: 790702

Instead of inputs

X1=[1,-2] X2=[0,1] X1=[2,3] X1=[1,-1]

please read the inputs as

X1=[1,-2] X2=[0,1] X3=[2,3] X4=[1,-1]