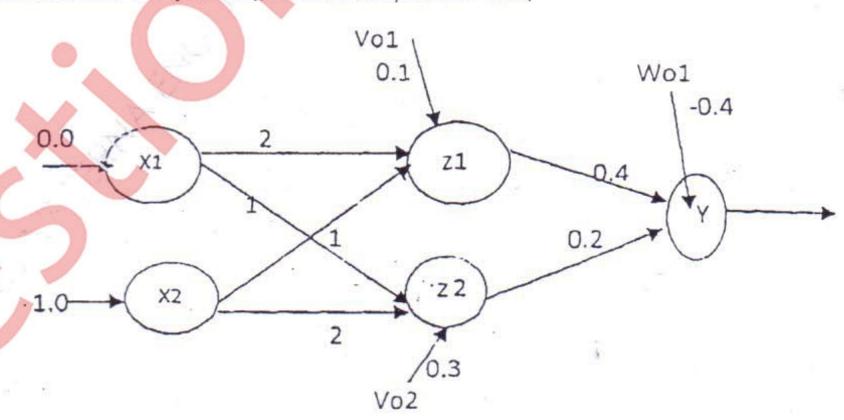
QP Code: 6000

(3 Hours)

[Total Marks: 80


N.B. 1) Question No. 1 is compulsory

- 2) Attempt any three questions out of remaining 5 questions
- 3) Draw neat labeled diagram wherever necessary.
- 1 Solve any four:

20

- A Define soft computing? Distinguish between soft computing and hard computing.
- B Determine (alfa) a -level sets and strong a -level sets for the following fuzzy set. $A = \{(1, 0.2), (2, 0.5), (3, 0.8), (4.1), (5. 0.7), (6. 0.3);$
- C Prove that the first order derivative of a unipolar continuous activation function is f'(net) =0 (1-0)
- D Draw the five layer architecture of ANFIS and explain each layer in brisf.
- E What are the differences between derivative free and derivative based optimization.
- F Distinguish between Supervised and Un-supervised learning
- Design a fuzzy controller for a train approaching station. Inputs are speed and Distance and output is Break power. Use triangular membership function. Consider two descriptor for input and three descriptors for output. Derive a set of rules for control action and defuzzification. The design should be supported by figures wherever possible. Design a fuzzy controller for a train with high speed and small distance.
- A Apply Backpropogation Algorithm to find the final weights for the following net.

 Inputs: x = [0.0,1.0], Weights between Hidden and Output Layers: w = [0.4,0.2], Bias on the Output Node O is Wo= [-0.4], Weights between Input and Hidden Layer: v = [2,1;1,2], Bias on Hidden Unit nodes are Vo= [0.1 0 3], Desired output: d = 1.0,

B What is self-organizing map? Draw and explain architecture of Kohonen Self Crganization Feature Map KSOFM.

10

- What are the different types of encoding, selection, crossover, mutations of GA. Explain 10 each type with suitable examples
 - B Explain with suitable examples Linearly and Non-linearly separable pattern classification

10

[TURN OVER

QP Code: 6000

5 A Explain Learning Vector Quantization Algorithm?

10

10

B The formation of algal solutions in surface water is strongly dependent on pH of water, temperature and oxygen content. T is a set of water temperatures from a lake given by T= {50, 55, 60} and O is oxygen content values in water given by O≈ {1, 2, 6}. The fuzzy set of T is given by {0.7/50+0.8/55+0.9/60} and

The fuzzy set of T is given by {0.7/50+0.8/55+0.9/60} and fuzzy set of O is given by {0.1/1+0.6/2+0.8/6}

- i. Find R=T x O for Given $I = \{0.5/50 + 1/55 + 0.7/60\}$
- ii. Find S=1 o R using max-product composition
- iii. Find S= I o R using max-min composition
- 6 Write short notes on any two:
 - A Steepest Descent algorithm
 - B Newton Method
 - C Fuzzy inference system

20

MD-Con. 10767-15.