10

10

10

QP Code:719400

(3 Hours)

[Total Marks :80

N.B.: (1) Question No.1 is compulsory.

- (2) Attempt any three questions from the remaining five questions.
- (3) Assume suitable data wherever necessary.
- (4) Figures to the right indicates full marks
- 1. (a) Describe Cascade control with its block diagram
 - (b) Write a short note on Smith Predictor
 - (c) Write a short note on sampling
 - (d) Write short note on relative gain array

a. The following product quality data y_m were obtained from a bioreactor, based on a photometric measurement evaluation of the product

Time (min)	0	1	2	3	4	5	6	7	8
y_m	0	1.5	0.3	1.6	0.4	1.7	1.5	2.0	1.5

Filter the data using an exponential filter with $\Delta t = 1$ min and $\alpha = 0.5$

An in-line blending system is shown below.

It is proposed that w and x be controlled using a conventional multiloop control scheme, with W_A and W_B as the manipulated variables. Derive an expression for RGA and recommend the best controller pairing for the following conditions w = 4 kg/min and x = 0.4

a. Consider a first order plus time delay model.

$$\frac{Y(s)}{U(s)} = \frac{Ke^{-\theta s}}{\tau s + 1}$$

 Derive an equivalent step response model by consider the the analytical solution to a unit step change in the input.

[TURN OVER

- ii. Calculate the step response coefficients for the parameter values of $K=5, \tau=15$ and $\theta=3$ min
- b. Discuss batch control systems.
- a. Discuss hypothetical plant for plant-wide control studies.
 - Discuss the procedure for the design of plant wide control systems.
- 5. a. Derive transfer function for analog exponential filter.
 - b. Derive discrete transfer function for PID controller.
- 6. Write short notes on the following
 - a) Optimal control
 - b) Minimum Variance Control
 - c) Inferential Control
 - d) Issues in Plant wide control