22/11/17

Q.P. Code: 25462

(3 hours)

Maximum marks: 80

N.B.

- 1. Question no. 1 is compulsory.
- 2. Attempt any three questions out of remaining five questions.
- Assume any suitable data wherever required.
- Draw figures wherever needed.

Ol. Write short notes on any four.

(20)

- (a) Autofrettage
- (b) Expansion bellow
- (6) Baffles and tie rods
 - (d) Drum Filter
- Difference between U tube and fix tube heat exchangers
- Q2.Design a U tube heat exchanger for the following data:

(i) Shell side:

Design pressure = 0.7 N/mm²

Permissible stress for shell material = 100 N/ mm²

Standard torispherical head with knuckle radius as 10% of crown radius

25 % cut segmental baffles are provided

(ii) Tube side:

Number of tubes = 85

Tube outside diameter = 20 mm

Design pressure of tube side fluid = 2.5 N/mm²

Permissible stress of tube material and tube sheet= 120 N/mm²

Tubes pitch=Triangular

Length of the tube =3m

(iii) Channel flange

Material of construction same as shell

Gasket used: Flat Metal jacketed asbestos

With Gasket factor m = 5.5

Gasket seating stress $y = 126 \text{ N/mm}^2$

Page 1 of 3 F691584A4BE2D03B98D51BFBE1C6183D

(6)

Gasket for shell side flange

Flat Soft metal with Gasket factor = 3.75

Gasket seating stress = 53 N/mm²

Corrosion allowance = 2 mm

Allowable stress for bolt material 140N/mm²

Design for

- (i) Shell (diameter and thickness) and torispherical head
- (ii) Flanges between shell and tube sheet (6)
- (iii) Tube sheet thickness (4)
- (iv) Channel and channel cover
- Q.3 Design a calendria type evaporator with the following data assuming that it has wire mesh for entrainment separation.

Evaporator drum under vacuum	External processes 0.12 N/	
Amount of water to be evaporated	External pressure 0.12 N/mm ² 31,000 N/hr	
Heating surface required	400 m ²	- 4300
Steam pressure	0.2 N/mm ²	
Density of liquid	9950 N/m ³	
Density of vapour	0.85 N/m ³	
Effective tube length	1800 mm	
Tube outside diameter	100 mm	
Tube thickness	1.5 mm	
Tubes laid on triangular pitch	1.5 (111)	8.5
Assume downtake pipe as 50% of the	e total tube cross section -1	
Permissible stress for evaporator mat	erial = 98 N/mm ²	
Poisson's ratio	0.3	
Modulus of elasticity for carbon steel		
Modulus of elasticity for brass =	9.5 x 10 ⁴ N/mm ²	
Design the	yis a to twittin	
(i) Calendria Diameter		
(ii)Tube sheet thickness		(5)
(iii) Vapor drum diameter		(6)
(iv) Top torispherical head		(6)
		(3)

Q.4(a) Show the symbols for the	following components		
(i) Ball mill (ii) Kettle Reboile		(iv) Autoclave	
(v) Filter press			(5)
(b)Write notes on			3
(i) Process flow diagram	(ii) Piping and Instr	umentation Diagram	(10)
			whom sto
(c) Estimate the optimum pipe di	ameter for a water flow ra	ite of 12 Kg/s at 20°C. C	wie lamin
pipe is used. Viscosity of water at	20°C is 1.1 x 10 -3 Ns/m ²	. Also find whether not	(5)
or turbulent.		1	
Q.5(a) Design the shell wall of a	tall column with the follo	wing data:	(20)
Shell inside diameter = 0.9 m			
Shell length tangent to tangent =	20 m		
Skirt height= 4m			
Design pressure= 1.1 N/mm ²			
Corrosion allowance= 3 mm			
Tray spacing = 0.75 m			
Top disengaging spacing = 1.5 m		To whater	
Insulation thickness = 100mm			
Specific gravity =7.7	-1-7700N/mm³		
Density of insulation per unit hei	gnt=//out/min		
Weir height = 75 mm	to este		
Weight of each head = 7.5 KN	1		
Wind pressure = 1000 N/m ²	N/m²		
Weight of the liquid in Tray = 920 Permissible stress for shell wall m	aterial = 95N/mm²		
Weight of the pipe, ladder, platefor	11-1400.011		
Q. Q.6(a) Discuss design procedu	m of making high pressu	re vessel based on var	ious
Q. Q.6(a) Discuss design procedu theories of failure	ie or maxing mgn presse		(12)
(b) Write notes on various types o	f construction of a high p	ressure vessel	(8)
			THE ST. ST. D. W