102/3016

B.E. VII sem- Biomed.

Biomed - rey large scale

interested circulations

BE/VII/BM/CBGS/VISI

	QP Code: 31401	5/1
	(3 Hours) [Total Marks:	80
	N. B.: (1) Question No. 1 is compulsory. (2) Attempt any three out of remaining five. (3) State your assumptions.	
1.	(a) Explain basic features of VHDL	5
	(b) Explain hot electron effect	5
	(c) Draw the voltage transfer characteristics of CMOS inverter and mark V_{IH} , V_{OH} , V_{IL} , V_{OL}	5
	(d) Explain oxidation, in VLSI fabrication	5
2.	(a) Explain the twin tub process in detail	10
	(b) Explain latch-up in CMOS, and also explain methods to minimise	10
3.	(a) Compare constant voltage and constant field scaling.	10
	(b) Write VHDL code for the following	10
	(i) 3:8 decoder (ii) Binary to gray code conversion	
4.	(a) Claculate the threshold voltage V_{TO} at $V_{SB} = 0$ for a polysilicon gate n-channel MOS transistor with the following parameters $N_A = 10^{16} \text{ cm}^{-3}$, $N_D = 2 \times 10^{20} \text{ cm}^{-3}$, $t_{ox} = 500^{\circ}\text{A}$ $N_{OX} = 4 \times 10^{10} \text{ cm}^{-2}$, $\epsilon_{si} = 11.7 \epsilon_0$; $\epsilon_{OX} = 3.97 \times \epsilon_0$; $\epsilon_0 = 8.854 \times 10^{-14} \text{ F/cm}$	10
	(b) Compare MOS inverter with	10
	(i) Passive load	
	(ii) E-nMOS as puli-up (iii) D-nMOS as pull-up	
	(iv) CMOS inverter	
5.	(a) Implement the following function using NMOS & CMOS logic gates $F = \overline{x} (yz + zw)$	10
	(b) Explain the architecure of XC 4000 FPGA	10
6.	Write short notes on following:-	20
	 (a) Surface inversion condition in MOS structure (b) λ-based NMOS design rules 	
	(c) Buried and butt contacts	
1	(d) Lithography	
	<u> </u>	